Benchmark with custom data.yaml
(#3858)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
@ -5,7 +5,7 @@ Benchmark a YOLO model formats for speed and accuracy
|
||||
Usage:
|
||||
from ultralytics.utils.benchmarks import ProfileModels, benchmark
|
||||
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile()
|
||||
run_benchmarks(model='yolov8n.pt', imgsz=160)
|
||||
benchmark(model='yolov8n.pt', imgsz=160)
|
||||
|
||||
Format | `format=argument` | Model
|
||||
--- | --- | ---
|
||||
@ -44,6 +44,7 @@ from ultralytics.utils.torch_utils import select_device
|
||||
|
||||
|
||||
def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
|
||||
data=None,
|
||||
imgsz=160,
|
||||
half=False,
|
||||
int8=False,
|
||||
@ -55,6 +56,7 @@ def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
|
||||
Args:
|
||||
model (str | Path | optional): Path to the model file or directory. Default is
|
||||
Path(SETTINGS['weights_dir']) / 'yolov8n.pt'.
|
||||
data (str, optional): Dataset to evaluate on, inherited from TASK2DATA if not passed. Default is None.
|
||||
imgsz (int, optional): Image size for the benchmark. Default is 160.
|
||||
half (bool, optional): Use half-precision for the model if True. Default is False.
|
||||
int8 (bool, optional): Use int8-precision for the model if True. Default is False.
|
||||
@ -106,7 +108,7 @@ def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
|
||||
export.predict(ROOT / 'assets/bus.jpg', imgsz=imgsz, device=device, half=half)
|
||||
|
||||
# Validate
|
||||
data = TASK2DATA[model.task] # task to dataset, i.e. coco8.yaml for task=detect
|
||||
data = data or TASK2DATA[model.task] # task to dataset, i.e. coco8.yaml for task=detect
|
||||
key = TASK2METRIC[model.task] # task to metric, i.e. metrics/mAP50-95(B) for task=detect
|
||||
results = export.val(data=data,
|
||||
batch=1,
|
||||
|
Reference in New Issue
Block a user