Command injection and Path traversal security fixes (#888)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2023-02-09 13:27:46 +04:00
committed by GitHub
parent 365c2ef481
commit a5a3ce88b3
4 changed files with 21 additions and 21 deletions

View File

@ -5,6 +5,7 @@ Simple training loop; Boilerplate that could apply to any arbitrary neural netwo
import os
import subprocess
import sys
import time
from collections import defaultdict
from copy import deepcopy
@ -28,10 +29,10 @@ from ultralytics.yolo.utils import (DEFAULT_CFG, LOGGER, RANK, SETTINGS, TQDM_BA
yaml_save)
from ultralytics.yolo.utils.autobatch import check_train_batch_size
from ultralytics.yolo.utils.checks import check_file, check_imgsz, print_args
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_file, find_free_network_port
from ultralytics.yolo.utils.files import get_latest_run, increment_path
from ultralytics.yolo.utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, init_seeds, one_cycle,
select_device, strip_optimizer)
select_device, strip_optimizer, TORCH_1_9)
class BaseTrainer:
@ -174,13 +175,18 @@ class BaseTrainer:
# Run subprocess if DDP training, else train normally
if world_size > 1 and "LOCAL_RANK" not in os.environ:
command = generate_ddp_command(world_size, self)
# cmd, file = generate_ddp_command(world_size, self) # security vulnerability in Snyk scans
file = generate_ddp_file(self) if sys.argv[0].endswith('yolo') else os.path.abspath(sys.argv[0])
torch_distributed_cmd = "torch.distributed.run" if TORCH_1_9 else "torch.distributed.launch"
cmd = [
sys.executable, "-m", torch_distributed_cmd, "--nproc_per_node", f"{world_size}", "--master_port",
f"{find_free_network_port()}", file] + sys.argv[1:]
try:
subprocess.run(command)
subprocess.run(cmd, check=True)
except Exception as e:
self.console(e)
self.console.warning(e)
finally:
ddp_cleanup(command, self)
ddp_cleanup(self, file)
else:
self._do_train(int(os.getenv("RANK", -1)), world_size)