ultralytics 8.0.81 single-line docstring updates (#2061)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2023-04-17 00:45:36 +02:00
committed by GitHub
parent 5bce1c3021
commit a38f227672
64 changed files with 620 additions and 58 deletions

View File

@ -8,6 +8,7 @@ from ultralytics.yolo.v8.detect.predict import DetectionPredictor
class PosePredictor(DetectionPredictor):
def postprocess(self, preds, img, orig_img):
"""Return detection results for a given input image or list of images."""
preds = ops.non_max_suppression(preds,
self.args.conf,
self.args.iou,
@ -35,6 +36,7 @@ class PosePredictor(DetectionPredictor):
def predict(cfg=DEFAULT_CFG, use_python=False):
"""Runs YOLO to predict objects in an image or video."""
model = cfg.model or 'yolov8n-pose.pt'
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \
else 'https://ultralytics.com/images/bus.jpg'

View File

@ -21,12 +21,14 @@ from ultralytics.yolo.v8.detect.train import Loss
class PoseTrainer(v8.detect.DetectionTrainer):
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initialize a PoseTrainer object with specified configurations and overrides."""
if overrides is None:
overrides = {}
overrides['task'] = 'pose'
super().__init__(cfg, overrides, _callbacks)
def get_model(self, cfg=None, weights=None, verbose=True):
"""Get pose estimation model with specified configuration and weights."""
model = PoseModel(cfg, ch=3, nc=self.data['nc'], data_kpt_shape=self.data['kpt_shape'], verbose=verbose)
if weights:
model.load(weights)
@ -34,19 +36,23 @@ class PoseTrainer(v8.detect.DetectionTrainer):
return model
def set_model_attributes(self):
"""Sets keypoints shape attribute of PoseModel."""
super().set_model_attributes()
self.model.kpt_shape = self.data['kpt_shape']
def get_validator(self):
"""Returns an instance of the PoseValidator class for validation."""
self.loss_names = 'box_loss', 'pose_loss', 'kobj_loss', 'cls_loss', 'dfl_loss'
return v8.pose.PoseValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
def criterion(self, preds, batch):
"""Computes pose loss for the YOLO model."""
if not hasattr(self, 'compute_loss'):
self.compute_loss = PoseLoss(de_parallel(self.model))
return self.compute_loss(preds, batch)
def plot_training_samples(self, batch, ni):
"""Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints."""
images = batch['img']
kpts = batch['keypoints']
cls = batch['cls'].squeeze(-1)
@ -62,6 +68,7 @@ class PoseTrainer(v8.detect.DetectionTrainer):
fname=self.save_dir / f'train_batch{ni}.jpg')
def plot_metrics(self):
"""Plots training/val metrics."""
plot_results(file=self.csv, pose=True) # save results.png
@ -78,6 +85,7 @@ class PoseLoss(Loss):
self.keypoint_loss = KeypointLoss(sigmas=sigmas)
def __call__(self, preds, batch):
"""Calculate the total loss and detach it."""
loss = torch.zeros(5, device=self.device) # box, cls, dfl, kpt_location, kpt_visibility
feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1]
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
@ -145,6 +153,7 @@ class PoseLoss(Loss):
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
def kpts_decode(self, anchor_points, pred_kpts):
"""Decodes predicted keypoints to image coordinates."""
y = pred_kpts.clone()
y[..., :2] *= 2.0
y[..., 0] += anchor_points[:, [0]] - 0.5
@ -153,6 +162,7 @@ class PoseLoss(Loss):
def train(cfg=DEFAULT_CFG, use_python=False):
"""Train the YOLO model on the given data and device."""
model = cfg.model or 'yolov8n-pose.yaml'
data = cfg.data or 'coco8-pose.yaml'
device = cfg.device if cfg.device is not None else ''

View File

@ -15,20 +15,24 @@ from ultralytics.yolo.v8.detect import DetectionValidator
class PoseValidator(DetectionValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initialize a 'PoseValidator' object with custom parameters and assigned attributes."""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.args.task = 'pose'
self.metrics = PoseMetrics(save_dir=self.save_dir)
def preprocess(self, batch):
"""Preprocesses the batch by converting the 'keypoints' data into a float and moving it to the device."""
batch = super().preprocess(batch)
batch['keypoints'] = batch['keypoints'].to(self.device).float()
return batch
def get_desc(self):
"""Returns description of evaluation metrics in string format."""
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Pose(P',
'R', 'mAP50', 'mAP50-95)')
def postprocess(self, preds):
"""Apply non-maximum suppression and return detections with high confidence scores."""
preds = ops.non_max_suppression(preds,
self.args.conf,
self.args.iou,
@ -40,6 +44,7 @@ class PoseValidator(DetectionValidator):
return preds
def init_metrics(self, model):
"""Initiate pose estimation metrics for YOLO model."""
super().init_metrics(model)
self.kpt_shape = self.data['kpt_shape']
is_pose = self.kpt_shape == [17, 3]
@ -137,6 +142,7 @@ class PoseValidator(DetectionValidator):
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
def plot_val_samples(self, batch, ni):
"""Plots and saves validation set samples with predicted bounding boxes and keypoints."""
plot_images(batch['img'],
batch['batch_idx'],
batch['cls'].squeeze(-1),
@ -147,6 +153,7 @@ class PoseValidator(DetectionValidator):
names=self.names)
def plot_predictions(self, batch, preds, ni):
"""Plots predictions for YOLO model."""
pred_kpts = torch.cat([p[:, 6:].view(-1, *self.kpt_shape)[:15] for p in preds], 0)
plot_images(batch['img'],
*output_to_target(preds, max_det=15),
@ -156,6 +163,7 @@ class PoseValidator(DetectionValidator):
names=self.names) # pred
def pred_to_json(self, predn, filename):
"""Converts YOLO predictions to COCO JSON format."""
stem = Path(filename).stem
image_id = int(stem) if stem.isnumeric() else stem
box = ops.xyxy2xywh(predn[:, :4]) # xywh
@ -169,6 +177,7 @@ class PoseValidator(DetectionValidator):
'score': round(p[4], 5)})
def eval_json(self, stats):
"""Evaluates object detection model using COCO JSON format."""
if self.args.save_json and self.is_coco and len(self.jdict):
anno_json = self.data['path'] / 'annotations/person_keypoints_val2017.json' # annotations
pred_json = self.save_dir / 'predictions.json' # predictions
@ -197,6 +206,7 @@ class PoseValidator(DetectionValidator):
def val(cfg=DEFAULT_CFG, use_python=False):
"""Performs validation on YOLO model using given data."""
model = cfg.model or 'yolov8n-pose.pt'
data = cfg.data or 'coco8-pose.yaml'