ultralytics 8.0.81 single-line docstring updates (#2061)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -44,6 +44,7 @@ class DetectionTrainer(BaseTrainer):
|
||||
rect=mode == 'val', data_info=self.data)[0]
|
||||
|
||||
def preprocess_batch(self, batch):
|
||||
"""Preprocesses a batch of images by scaling and converting to float."""
|
||||
batch['img'] = batch['img'].to(self.device, non_blocking=True).float() / 255
|
||||
return batch
|
||||
|
||||
@ -58,16 +59,19 @@ class DetectionTrainer(BaseTrainer):
|
||||
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
|
||||
|
||||
def get_model(self, cfg=None, weights=None, verbose=True):
|
||||
"""Return a YOLO detection model."""
|
||||
model = DetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1)
|
||||
if weights:
|
||||
model.load(weights)
|
||||
return model
|
||||
|
||||
def get_validator(self):
|
||||
"""Returns a DetectionValidator for YOLO model validation."""
|
||||
self.loss_names = 'box_loss', 'cls_loss', 'dfl_loss'
|
||||
return v8.detect.DetectionValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
|
||||
|
||||
def criterion(self, preds, batch):
|
||||
"""Compute loss for YOLO prediction and ground-truth."""
|
||||
if not hasattr(self, 'compute_loss'):
|
||||
self.compute_loss = Loss(de_parallel(self.model))
|
||||
return self.compute_loss(preds, batch)
|
||||
@ -85,10 +89,12 @@ class DetectionTrainer(BaseTrainer):
|
||||
return keys
|
||||
|
||||
def progress_string(self):
|
||||
"""Returns a formatted string of training progress with epoch, GPU memory, loss, instances and size."""
|
||||
return ('\n' + '%11s' *
|
||||
(4 + len(self.loss_names))) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
|
||||
|
||||
def plot_training_samples(self, batch, ni):
|
||||
"""Plots training samples with their annotations."""
|
||||
plot_images(images=batch['img'],
|
||||
batch_idx=batch['batch_idx'],
|
||||
cls=batch['cls'].squeeze(-1),
|
||||
@ -97,9 +103,11 @@ class DetectionTrainer(BaseTrainer):
|
||||
fname=self.save_dir / f'train_batch{ni}.jpg')
|
||||
|
||||
def plot_metrics(self):
|
||||
"""Plots metrics from a CSV file."""
|
||||
plot_results(file=self.csv) # save results.png
|
||||
|
||||
def plot_training_labels(self):
|
||||
"""Create a labeled training plot of the YOLO model."""
|
||||
boxes = np.concatenate([lb['bboxes'] for lb in self.train_loader.dataset.labels], 0)
|
||||
cls = np.concatenate([lb['cls'] for lb in self.train_loader.dataset.labels], 0)
|
||||
plot_labels(boxes, cls.squeeze(), names=self.data['names'], save_dir=self.save_dir)
|
||||
@ -129,6 +137,7 @@ class Loss:
|
||||
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)
|
||||
|
||||
def preprocess(self, targets, batch_size, scale_tensor):
|
||||
"""Preprocesses the target counts and matches with the input batch size to output a tensor."""
|
||||
if targets.shape[0] == 0:
|
||||
out = torch.zeros(batch_size, 0, 5, device=self.device)
|
||||
else:
|
||||
@ -145,6 +154,7 @@ class Loss:
|
||||
return out
|
||||
|
||||
def bbox_decode(self, anchor_points, pred_dist):
|
||||
"""Decode predicted object bounding box coordinates from anchor points and distribution."""
|
||||
if self.use_dfl:
|
||||
b, a, c = pred_dist.shape # batch, anchors, channels
|
||||
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
||||
@ -153,6 +163,7 @@ class Loss:
|
||||
return dist2bbox(pred_dist, anchor_points, xywh=False)
|
||||
|
||||
def __call__(self, preds, batch):
|
||||
"""Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
|
||||
loss = torch.zeros(3, device=self.device) # box, cls, dfl
|
||||
feats = preds[1] if isinstance(preds, tuple) else preds
|
||||
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
||||
@ -199,6 +210,7 @@ class Loss:
|
||||
|
||||
|
||||
def train(cfg=DEFAULT_CFG, use_python=False):
|
||||
"""Train and optimize YOLO model given training data and device."""
|
||||
model = cfg.model or 'yolov8n.pt'
|
||||
data = cfg.data or 'coco128.yaml' # or yolo.ClassificationDataset("mnist")
|
||||
device = cfg.device if cfg.device is not None else ''
|
||||
|
||||
Reference in New Issue
Block a user