ultralytics 8.0.81 single-line docstring updates (#2061)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2023-04-17 00:45:36 +02:00
committed by GitHub
parent 5bce1c3021
commit a38f227672
64 changed files with 620 additions and 58 deletions

View File

@ -14,15 +14,18 @@ from ultralytics.yolo.utils.torch_utils import is_parallel, strip_optimizer
class ClassificationTrainer(BaseTrainer):
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initialize a ClassificationTrainer object with optional configuration overrides and callbacks."""
if overrides is None:
overrides = {}
overrides['task'] = 'classify'
super().__init__(cfg, overrides, _callbacks)
def set_model_attributes(self):
"""Set the YOLO model's class names from the loaded dataset."""
self.model.names = self.data['names']
def get_model(self, cfg=None, weights=None, verbose=True):
"""Returns a modified PyTorch model configured for training YOLO."""
model = ClassificationModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
@ -69,6 +72,7 @@ class ClassificationTrainer(BaseTrainer):
return # dont return ckpt. Classification doesn't support resume
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
"""Returns PyTorch DataLoader with transforms to preprocess images for inference."""
loader = build_classification_dataloader(path=dataset_path,
imgsz=self.args.imgsz,
batch_size=batch_size if mode == 'train' else (batch_size * 2),
@ -84,19 +88,23 @@ class ClassificationTrainer(BaseTrainer):
return loader
def preprocess_batch(self, batch):
"""Preprocesses a batch of images and classes."""
batch['img'] = batch['img'].to(self.device)
batch['cls'] = batch['cls'].to(self.device)
return batch
def progress_string(self):
"""Returns a formatted string showing training progress."""
return ('\n' + '%11s' * (4 + len(self.loss_names))) % \
('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
def get_validator(self):
"""Returns an instance of ClassificationValidator for validation."""
self.loss_names = ['loss']
return v8.classify.ClassificationValidator(self.test_loader, self.save_dir)
def criterion(self, preds, batch):
"""Compute the classification loss between predictions and true labels."""
loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / self.args.nbs
loss_items = loss.detach()
return loss, loss_items
@ -113,9 +121,11 @@ class ClassificationTrainer(BaseTrainer):
return dict(zip(keys, loss_items))
def resume_training(self, ckpt):
"""Resumes training from a given checkpoint."""
pass
def final_eval(self):
"""Evaluate trained model and save validation results."""
for f in self.last, self.best:
if f.exists():
strip_optimizer(f) # strip optimizers
@ -130,6 +140,7 @@ class ClassificationTrainer(BaseTrainer):
def train(cfg=DEFAULT_CFG, use_python=False):
"""Train the YOLO classification model."""
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18"
data = cfg.data or 'mnist160' # or yolo.ClassificationDataset("mnist")
device = cfg.device if cfg.device is not None else ''