Add RTDETR Trainer (#2745)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
@ -759,7 +759,7 @@ class Format:
|
||||
return masks, instances, cls
|
||||
|
||||
|
||||
def v8_transforms(dataset, imgsz, hyp):
|
||||
def v8_transforms(dataset, imgsz, hyp, stretch=False):
|
||||
"""Convert images to a size suitable for YOLOv8 training."""
|
||||
pre_transform = Compose([
|
||||
Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic),
|
||||
@ -770,7 +770,7 @@ def v8_transforms(dataset, imgsz, hyp):
|
||||
scale=hyp.scale,
|
||||
shear=hyp.shear,
|
||||
perspective=hyp.perspective,
|
||||
pre_transform=LetterBox(new_shape=(imgsz, imgsz)),
|
||||
pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)),
|
||||
)])
|
||||
flip_idx = dataset.data.get('flip_idx', None) # for keypoints augmentation
|
||||
if dataset.use_keypoints:
|
||||
|
@ -278,7 +278,8 @@ class BaseTrainer:
|
||||
self.epoch_time_start = time.time()
|
||||
self.train_time_start = time.time()
|
||||
nb = len(self.train_loader) # number of batches
|
||||
nw = max(round(self.args.warmup_epochs * nb), 100) # number of warmup iterations
|
||||
nw = max(round(self.args.warmup_epochs *
|
||||
nb), 100) if self.args.warmup_epochs > 0 else -1 # number of warmup iterations
|
||||
last_opt_step = -1
|
||||
self.run_callbacks('on_train_start')
|
||||
LOGGER.info(f'Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n'
|
||||
|
@ -24,10 +24,34 @@ class VarifocalLoss(nn.Module):
|
||||
weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction='none') *
|
||||
weight).sum()
|
||||
weight).mean(1).sum()
|
||||
return loss
|
||||
|
||||
|
||||
# Losses
|
||||
class FocalLoss(nn.Module):
|
||||
"""Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""
|
||||
|
||||
def __init__(self, ):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, pred, label, gamma=1.5, alpha=0.25):
|
||||
"""Calculates and updates confusion matrix for object detection/classification tasks."""
|
||||
loss = F.binary_cross_entropy_with_logits(pred, label, reduction='none')
|
||||
# p_t = torch.exp(-loss)
|
||||
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
||||
|
||||
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
||||
pred_prob = pred.sigmoid() # prob from logits
|
||||
p_t = label * pred_prob + (1 - label) * (1 - pred_prob)
|
||||
modulating_factor = (1.0 - p_t) ** gamma
|
||||
loss *= modulating_factor
|
||||
if alpha > 0:
|
||||
alpha_factor = label * alpha + (1 - label) * (1 - alpha)
|
||||
loss *= alpha_factor
|
||||
return loss.mean(1).sum()
|
||||
|
||||
|
||||
class BboxLoss(nn.Module):
|
||||
|
||||
def __init__(self, reg_max, use_dfl=False):
|
||||
|
@ -9,7 +9,6 @@ from pathlib import Path
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, SimpleClass, TryExcept, plt_settings
|
||||
|
||||
@ -175,40 +174,6 @@ def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#iss
|
||||
return 1.0 - 0.5 * eps, 0.5 * eps
|
||||
|
||||
|
||||
# Losses
|
||||
class FocalLoss(nn.Module):
|
||||
"""Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""
|
||||
|
||||
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||
"""Initialize FocalLoss object with given loss function and hyperparameters."""
|
||||
super().__init__()
|
||||
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||
self.gamma = gamma
|
||||
self.alpha = alpha
|
||||
self.reduction = loss_fcn.reduction
|
||||
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||
|
||||
def forward(self, pred, true):
|
||||
"""Calculates and updates confusion matrix for object detection/classification tasks."""
|
||||
loss = self.loss_fcn(pred, true)
|
||||
# p_t = torch.exp(-loss)
|
||||
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
||||
|
||||
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
||||
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
||||
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||
modulating_factor = (1.0 - p_t) ** self.gamma
|
||||
loss *= alpha_factor * modulating_factor
|
||||
|
||||
if self.reduction == 'mean':
|
||||
return loss.mean()
|
||||
elif self.reduction == 'sum':
|
||||
return loss.sum()
|
||||
else: # 'None'
|
||||
return loss
|
||||
|
||||
|
||||
class ConfusionMatrix:
|
||||
"""
|
||||
A class for calculating and updating a confusion matrix for object detection and classification tasks.
|
||||
|
@ -327,6 +327,9 @@ def init_seeds(seed=0, deterministic=False):
|
||||
os.environ['PYTHONHASHSEED'] = str(seed)
|
||||
else:
|
||||
LOGGER.warning('WARNING ⚠️ Upgrade to torch>=2.0.0 for deterministic training.')
|
||||
else:
|
||||
torch.use_deterministic_algorithms(False)
|
||||
torch.backends.cudnn.deterministic = False
|
||||
|
||||
|
||||
class ModelEMA:
|
||||
|
Reference in New Issue
Block a user