Add RTDETR Trainer (#2745)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
Ayush Chaurasia
2023-06-17 17:16:18 +05:30
committed by GitHub
parent 03bce07848
commit a0ba8ef5f0
23 changed files with 989 additions and 314 deletions

View File

@ -35,6 +35,7 @@ from ultralytics import RTDETR
model = RTDETR("rtdetr-l.pt")
model.info() # display model information
model.train(data="coco8.yaml") # train
model.predict("path/to/image.jpg") # predict
```
@ -51,7 +52,7 @@ model.predict("path/to/image.jpg") # predict
|------------|--------------------|
| Inference | :heavy_check_mark: |
| Validation | :heavy_check_mark: |
| Training | :x: (Coming soon) |
| Training | :heavy_check_mark: |
# Citations and Acknowledgements
@ -70,4 +71,4 @@ If you use Baidu's RT-DETR in your research or development work, please cite the
We would like to acknowledge Baidu and the [PaddlePaddle](https://github.com/PaddlePaddle/PaddleDetection) team for creating and maintaining this valuable resource for the computer vision community. Their contribution to the field with the development of the Vision Transformers-based real-time object detector, RT-DETR, is greatly appreciated.
*Keywords: RT-DETR, Transformer, ViT, Vision Transformers, Baidu RT-DETR, PaddlePaddle, Paddle Paddle RT-DETR, real-time object detection, Vision Transformers-based object detection, pre-trained PaddlePaddle RT-DETR models, Baidu's RT-DETR usage, Ultralytics Python API*
*Keywords: RT-DETR, Transformer, ViT, Vision Transformers, Baidu RT-DETR, PaddlePaddle, Paddle Paddle RT-DETR, real-time object detection, Vision Transformers-based object detection, pre-trained PaddlePaddle RT-DETR models, Baidu's RT-DETR usage, Ultralytics Python API*

View File

@ -8,6 +8,11 @@ keywords: Ultralytics, YOLO, loss functions, object detection, keypoint detectio
:::ultralytics.yolo.utils.loss.VarifocalLoss
<br><br>
# FocalLoss
---
:::ultralytics.yolo.utils.loss.FocalLoss
<br><br>
# BboxLoss
---
:::ultralytics.yolo.utils.loss.BboxLoss

View File

@ -3,11 +3,6 @@ description: Explore Ultralytics YOLO's FocalLoss, DetMetrics, PoseMetrics, Clas
keywords: YOLOv5, metrics, losses, confusion matrix, detection metrics, pose metrics, classification metrics, intersection over area, intersection over union, keypoint intersection over union, average precision, per class average precision, Ultralytics Docs
---
# FocalLoss
---
:::ultralytics.yolo.utils.metrics.FocalLoss
<br><br>
# ConfusionMatrix
---
:::ultralytics.yolo.utils.metrics.ConfusionMatrix