Add AutoBatch from YOLOv5 (#145)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent 172cef2d20
commit 99275814f1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -27,6 +27,7 @@ from ultralytics.yolo.configs import get_config
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.utils import (DEFAULT_CONFIG, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, callbacks, colorstr, from ultralytics.yolo.utils import (DEFAULT_CONFIG, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, callbacks, colorstr,
yaml_save) yaml_save)
from ultralytics.yolo.utils.autobatch import check_train_batch_size
from ultralytics.yolo.utils.checks import check_file, print_args from ultralytics.yolo.utils.checks import check_file, print_args
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command
from ultralytics.yolo.utils.files import get_latest_run, increment_path from ultralytics.yolo.utils.files import get_latest_run, increment_path
@ -135,7 +136,7 @@ class BaseTrainer:
self.fitness = None self.fitness = None
self.loss = None self.loss = None
self.tloss = None self.tloss = None
self.loss_names = None self.loss_names = ['Loss']
self.csv = self.save_dir / 'results.csv' self.csv = self.save_dir / 'results.csv'
self.plot_idx = [0, 1, 2] self.plot_idx = [0, 1, 2]
@ -192,6 +193,15 @@ class BaseTrainer:
self.set_model_attributes() self.set_model_attributes()
if world_size > 1: if world_size > 1:
self.model = DDP(self.model, device_ids=[rank]) self.model = DDP(self.model, device_ids=[rank])
# Batch size
if self.batch_size == -1:
if RANK == -1: # single-GPU only, estimate best batch size
self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp)
else:
SyntaxError('batch=-1 to use AutoBatch is only available in Single-GPU training. '
'Please pass a valid batch size value for Multi-GPU DDP training, i.e. batch=16')
# Optimizer # Optimizer
self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing
self.args.weight_decay *= self.batch_size * self.accumulate / self.args.nbs # scale weight_decay self.args.weight_decay *= self.batch_size * self.accumulate / self.args.nbs # scale weight_decay

@ -78,7 +78,7 @@ class BaseValidator:
self.device = trainer.device self.device = trainer.device
self.data = trainer.data self.data = trainer.data
model = trainer.ema.ema or trainer.model model = trainer.ema.ema or trainer.model
self.args.half &= self.device.type != 'cpu' self.args.half = self.device.type != 'cpu' # force FP16 val during training
model = model.half() if self.args.half else model.float() model = model.half() if self.args.half else model.float()
self.model = model self.model = model
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device) self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)

@ -0,0 +1,72 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Auto-batch utils
"""
from copy import deepcopy
import numpy as np
import torch
from ultralytics.yolo.utils import LOGGER, colorstr
from ultralytics.yolo.utils.torch_utils import profile
def check_train_batch_size(model, imgsz=640, amp=True):
# Check YOLOv5 training batch size
with torch.cuda.amp.autocast(amp):
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
def autobatch(model, imgsz=640, fraction=0.7, batch_size=16):
# Automatically estimate best YOLOv5 batch size to use `fraction` of available CUDA memory
# Usage:
# import torch
# from utils.autobatch import autobatch
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
# print(autobatch(model))
# Check device
prefix = colorstr('AutoBatch: ')
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
device = next(model.parameters()).device # get model device
if device.type == 'cpu':
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
return batch_size
if torch.backends.cudnn.benchmark:
LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}')
return batch_size
# Inspect CUDA memory
gb = 1 << 30 # bytes to GiB (1024 ** 3)
d = str(device).upper() # 'CUDA:0'
properties = torch.cuda.get_device_properties(device) # device properties
t = properties.total_memory / gb # GiB total
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
f = t - (r + a) # GiB free
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
# Profile batch sizes
batch_sizes = [1, 2, 4, 8, 16]
try:
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
results = profile(img, model, n=3, device=device)
except Exception as e:
LOGGER.warning(f'{prefix}{e}')
# Fit a solution
y = [x[2] for x in results if x] # memory [2]
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
if None in results: # some sizes failed
i = results.index(None) # first fail index
if b >= batch_sizes[i]: # y intercept above failure point
b = batch_sizes[max(i - 1, 0)] # select prior safe point
if b < 1 or b > 1024: # b outside of safe range
b = batch_size
LOGGER.warning(f'{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.')
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
return b

@ -299,3 +299,54 @@ def guess_task_from_head(head):
raise SyntaxError("task or model not recognized! Please refer the docs at : ") # TODO: add docs links raise SyntaxError("task or model not recognized! Please refer the docs at : ") # TODO: add docs links
return task return task
def profile(input, ops, n=10, device=None):
""" YOLOv5 speed/memory/FLOPs profiler
Usage:
input = torch.randn(16, 3, 640, 640)
m1 = lambda x: x * torch.sigmoid(x)
m2 = nn.SiLU()
profile(input, [m1, m2], n=100) # profile over 100 iterations
"""
results = []
if not isinstance(device, torch.device):
device = select_device(device)
print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
f"{'input':>24s}{'output':>24s}")
for x in input if isinstance(input, list) else [input]:
x = x.to(device)
x.requires_grad = True
for m in ops if isinstance(ops, list) else [ops]:
m = m.to(device) if hasattr(m, 'to') else m # device
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
try:
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
except Exception:
flops = 0
try:
for _ in range(n):
t[0] = time_sync()
y = m(x)
t[1] = time_sync()
try:
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
t[2] = time_sync()
except Exception: # no backward method
# print(e) # for debug
t[2] = float('nan')
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
results.append([p, flops, mem, tf, tb, s_in, s_out])
except Exception as e:
print(e)
results.append(None)
torch.cuda.empty_cache()
return results

@ -74,9 +74,16 @@ class DetectionTrainer(BaseTrainer):
return self.compute_loss(preds, batch) return self.compute_loss(preds, batch)
def label_loss_items(self, loss_items=None, prefix="train"): def label_loss_items(self, loss_items=None, prefix="train"):
# We should just use named tensors here in future """
Returns a loss dict with labelled training loss items tensor
"""
# Not needed for classification but necessary for segmentation & detection
keys = [f"{prefix}/{x}" for x in self.loss_names] keys = [f"{prefix}/{x}" for x in self.loss_names]
return dict(zip(keys, loss_items)) if loss_items is not None else keys if loss_items is not None:
loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats
return dict(zip(keys, loss_items))
else:
return keys
def progress_string(self): def progress_string(self):
return ('\n' + '%11s' * return ('\n' + '%11s' *

Loading…
Cancel
Save