YOLOv5 updates (#90)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2022-12-25 14:33:18 +01:00
committed by GitHub
parent ebd3cfb2fd
commit 98815d560f
27 changed files with 281 additions and 161 deletions

View File

@ -29,16 +29,14 @@ import platform
from pathlib import Path
import cv2
import torch
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages, LoadScreenshots, LoadStreams
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS, check_dataset, check_dataset_yaml
from ultralytics.yolo.utils import LOGGER, ROOT, TQDM_BAR_FORMAT, colorstr, ops
from ultralytics.yolo.utils import LOGGER, ROOT, colorstr, ops
from ultralytics.yolo.utils.checks import check_file, check_imshow
from ultralytics.yolo.utils.configs import get_config
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.modeling.autobackend import AutoBackend
from ultralytics.yolo.utils.plotting import Annotator
from ultralytics.yolo.utils.torch_utils import check_imgsz, select_device, smart_inference_mode
DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml"
@ -125,11 +123,7 @@ class BasePredictor:
@smart_inference_mode()
def __call__(self, source=None, model=None):
if not self.done_setup:
model = self.setup(source, model)
else:
model = self.model
model = self.model if self.done_setup else self.setup(source, model)
self.seen, self.windows, self.dt = 0, [], (ops.Profile(), ops.Profile(), ops.Profile())
for batch in self.dataset:
path, im, im0s, vid_cap, s = batch

View File

@ -60,7 +60,8 @@ class BaseTrainer:
# device
self.device = utils.torch_utils.select_device(self.args.device, self.batch_size)
self.scaler = amp.GradScaler(enabled=self.device.type != 'cpu')
self.amp = self.device.type != 'cpu'
self.scaler = amp.GradScaler(enabled=self.amp)
# Model and Dataloaders.
self.model = self.args.model
@ -175,6 +176,10 @@ class BaseTrainer:
nw = max(round(self.args.warmup_epochs * nb), 100) # number of warmup iterations
last_opt_step = -1
self.trigger_callbacks("on_train_start")
self.log(f"Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n"
f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n'
f"Logging results to {colorstr('bold', self.save_dir)}\n"
f"Starting training for {self.epochs} epochs...")
for epoch in range(self.start_epoch, self.epochs):
self.epoch = epoch
self.trigger_callbacks("on_train_epoch_start")
@ -189,8 +194,6 @@ class BaseTrainer:
self.optimizer.zero_grad()
for i, batch in pbar:
self.trigger_callbacks("on_train_batch_start")
# forward
batch = self.preprocess_batch(batch)
# warmup
ni = i + nb * epoch
@ -204,17 +207,20 @@ class BaseTrainer:
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum])
preds = self.model(batch["img"])
self.loss, self.loss_items = self.criterion(preds, batch)
if rank != -1:
self.loss *= world_size
self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \
else self.loss_items
# Forward
with torch.cuda.amp.autocast(self.amp):
batch = self.preprocess_batch(batch)
preds = self.model(batch["img"])
self.loss, self.loss_items = self.criterion(preds, batch)
if rank != -1:
self.loss *= world_size
self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \
else self.loss_items
# backward
# Backward
self.scaler.scale(self.loss).backward()
# optimize
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
if ni - last_opt_step >= self.accumulate:
self.optimizer_step()
last_opt_step = ni
@ -237,7 +243,7 @@ class BaseTrainer:
self.scheduler.step()
self.trigger_callbacks("on_train_epoch_end")
if rank in [-1, 0]:
if rank in {-1, 0}:
# validation
self.trigger_callbacks('on_val_start')
self.ema.update_attr(self.model, include=['yaml', 'nc', 'args', 'names', 'stride', 'class_weights'])
@ -245,7 +251,7 @@ class BaseTrainer:
if not self.args.noval or final_epoch:
self.metrics, self.fitness = self.validate()
self.trigger_callbacks('on_val_end')
log_vals = self.label_loss_items(self.tloss) | self.metrics | lr
log_vals = {**self.label_loss_items(self.tloss), **self.metrics, **lr}
self.save_metrics(metrics=log_vals)
# save model
@ -259,12 +265,13 @@ class BaseTrainer:
# TODO: termination condition
if rank in [-1, 0]:
if rank in {-1, 0}:
# do the last evaluation with best.pt
self.log(f'\n{epoch - self.start_epoch + 1} epochs completed in '
f'{(time.time() - self.train_time_start) / 3600:.3f} hours.')
self.final_eval()
if self.args.plots:
self.plot_metrics()
self.log(f"\nTraining complete ({(time.time() - self.train_time_start) / 3600:.3f} hours)")
self.log(f"Results saved to {colorstr('bold', self.save_dir)}")
self.trigger_callbacks('on_train_end')
dist.destroy_process_group() if world_size > 1 else None

View File

@ -1,4 +1,3 @@
import logging
from pathlib import Path
import torch
@ -9,10 +8,9 @@ from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import LOGGER, TQDM_BAR_FORMAT
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.modeling import get_model
from ultralytics.yolo.utils.modeling.autobackend import AutoBackend
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import check_imgsz, de_parallel, select_device
from ultralytics.yolo.utils.torch_utils import check_imgsz, de_parallel, select_device, smart_inference_mode
class BaseValidator:
@ -32,8 +30,9 @@ class BaseValidator:
self.training = True
self.speed = None
self.save_dir = save_dir if save_dir is not None else \
increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok)
increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok)
@smart_inference_mode()
def __call__(self, trainer=None, model=None):
"""
Supports validation of a pre-trained model if passed or a model being trained
@ -76,35 +75,34 @@ class BaseValidator:
dt = Profile(), Profile(), Profile(), Profile()
n_batches = len(self.dataloader)
desc = self.get_desc()
# NOTE: keeping this `not self.training` in tqdm will eliminate pbar after finishing segmantation evaluation during training,
# so I removed it, not sure if this will affect classification task cause I saw we use this arg in yolov5/classify/val.py.
# NOTE: keeping `not self.training` in tqdm will eliminate pbar after segmentation evaluation during training,
# which may affect classification task since this arg is in yolov5/classify/val.py.
# bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT)
self.init_metrics(de_parallel(model))
with torch.no_grad():
for batch_i, batch in enumerate(bar):
self.batch_i = batch_i
# pre-process
with dt[0]:
batch = self.preprocess(batch)
for batch_i, batch in enumerate(bar):
self.batch_i = batch_i
# pre-process
with dt[0]:
batch = self.preprocess(batch)
# inference
with dt[1]:
preds = model(batch["img"])
# inference
with dt[1]:
preds = model(batch["img"])
# loss
with dt[2]:
if self.training:
self.loss += trainer.criterion(preds, batch)[1]
# loss
with dt[2]:
if self.training:
self.loss += trainer.criterion(preds, batch)[1]
# pre-process predictions
with dt[3]:
preds = self.postprocess(preds)
# pre-process predictions
with dt[3]:
preds = self.postprocess(preds)
self.update_metrics(preds, batch)
if self.args.plots and batch_i < 3:
self.plot_val_samples(batch, batch_i)
self.plot_predictions(batch, preds, batch_i)
self.update_metrics(preds, batch)
if self.args.plots and batch_i < 3:
self.plot_val_samples(batch, batch_i)
self.plot_predictions(batch, preds, batch_i)
stats = self.get_stats()
self.check_stats(stats)
@ -113,22 +111,21 @@ class BaseValidator:
# calculate speed only once when training
if not self.training or trainer.epoch == 0:
t = tuple(x.t / len(self.dataloader.dataset) * 1E3 for x in dt) # speeds per image
self.speed = t
self.speed = tuple(x.t / len(self.dataloader.dataset) * 1E3 for x in dt) # speeds per image
if not self.training: # print only at inference
self.logger.info(
'Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image' % t)
if not self.training: # print only at inference
self.logger.info('Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image' %
self.speed)
if self.training:
model.float()
# TODO: implement save json
return stats | trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val") \
if self.training else stats
return {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")} \
if self.training else stats
def get_dataloader(self, dataset_path, batch_size):
raise Exception("get_dataloder function not implemented for this validator")
raise NotImplementedError("get_dataloader function not implemented for this validator")
def preprocess(self, batch):
return batch