ultralytics 8.0.35
TensorRT, ONNX and OpenVINO predict and val (#929)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Eric Pedley <ericpedley@gmail.com>
This commit is contained in:
@ -57,15 +57,17 @@ class YOLO:
|
||||
self.overrides = {} # overrides for trainer object
|
||||
|
||||
# Load or create new YOLO model
|
||||
load_methods = {'.pt': self._load, '.yaml': self._new}
|
||||
suffix = Path(model).suffix
|
||||
if not suffix and Path(model).stem in GITHUB_ASSET_STEMS:
|
||||
model, suffix = Path(model).with_suffix('.pt'), '.pt' # add suffix, i.e. yolov8n -> yolov8n.pt
|
||||
if suffix in load_methods:
|
||||
{'.pt': self._load, '.yaml': self._new}[suffix](model)
|
||||
else:
|
||||
raise NotImplementedError(f"'{suffix}' models not supported. Try a *.pt and *.yaml model, "
|
||||
"i.e. model='yolov8n.pt' or model='yolov8n.yaml'")
|
||||
try:
|
||||
if suffix == '.yaml':
|
||||
self._new(model)
|
||||
else:
|
||||
self._load(model)
|
||||
except Exception as e:
|
||||
raise NotImplementedError(f"Unable to load model='{model}'. "
|
||||
f"As an example try model='yolov8n.pt' or model='yolov8n.yaml'") from e
|
||||
|
||||
def __call__(self, source=None, stream=False, **kwargs):
|
||||
return self.predict(source, stream, **kwargs)
|
||||
@ -78,13 +80,11 @@ class YOLO:
|
||||
cfg (str): model configuration file
|
||||
verbose (bool): display model info on load
|
||||
"""
|
||||
cfg = check_yaml(cfg) # check YAML
|
||||
cfg_dict = yaml_load(cfg, append_filename=True) # model dict
|
||||
self.cfg = check_yaml(cfg) # check YAML
|
||||
cfg_dict = yaml_load(self.cfg, append_filename=True) # model dict
|
||||
self.task = guess_model_task(cfg_dict)
|
||||
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \
|
||||
self._assign_ops_from_task(self.task)
|
||||
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._assign_ops_from_task()
|
||||
self.model = self.ModelClass(cfg_dict, verbose=verbose) # initialize
|
||||
self.cfg = cfg
|
||||
|
||||
def _load(self, weights: str):
|
||||
"""
|
||||
@ -93,13 +93,17 @@ class YOLO:
|
||||
Args:
|
||||
weights (str): model checkpoint to be loaded
|
||||
"""
|
||||
self.model, self.ckpt = attempt_load_one_weight(weights)
|
||||
suffix = Path(weights).suffix
|
||||
if suffix == '.pt':
|
||||
self.model, self.ckpt = attempt_load_one_weight(weights)
|
||||
self.task = self.model.args["task"]
|
||||
self.overrides = self.model.args
|
||||
self._reset_ckpt_args(self.overrides)
|
||||
else:
|
||||
self.model, self.ckpt = weights, None
|
||||
self.task = guess_model_task(weights)
|
||||
self.ckpt_path = weights
|
||||
self.task = self.model.args["task"]
|
||||
self.overrides = self.model.args
|
||||
self._reset_ckpt_args(self.overrides)
|
||||
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \
|
||||
self._assign_ops_from_task(self.task)
|
||||
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._assign_ops_from_task()
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
@ -166,7 +170,7 @@ class YOLO:
|
||||
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||
args.data = data or args.data
|
||||
args.task = self.task
|
||||
if args.imgsz == DEFAULT_CFG.imgsz:
|
||||
if args.imgsz == DEFAULT_CFG.imgsz and not isinstance(self.model, (str, Path)):
|
||||
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
||||
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
|
||||
|
||||
@ -189,7 +193,8 @@ class YOLO:
|
||||
args.task = self.task
|
||||
if args.imgsz == DEFAULT_CFG.imgsz:
|
||||
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
||||
|
||||
if args.batch == DEFAULT_CFG.batch:
|
||||
args.batch = 1 # default to 1 if not modified
|
||||
exporter = Exporter(overrides=args)
|
||||
exporter(model=self.model)
|
||||
|
||||
@ -231,8 +236,8 @@ class YOLO:
|
||||
"""
|
||||
self.model.to(device)
|
||||
|
||||
def _assign_ops_from_task(self, task):
|
||||
model_class, train_lit, val_lit, pred_lit = MODEL_MAP[task]
|
||||
def _assign_ops_from_task(self):
|
||||
model_class, train_lit, val_lit, pred_lit = MODEL_MAP[self.task]
|
||||
# warning: eval is unsafe. Use with caution
|
||||
trainer_class = eval(train_lit.replace("TYPE", f"{self.type}"))
|
||||
validator_class = eval(val_lit.replace("TYPE", f"{self.type}"))
|
||||
|
Reference in New Issue
Block a user