`ultralytics 8.0.18` new python callbacks and minor fixes (#580)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Jeroen Rombouts <36196499+jarombouts@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
single_channel
Ayush Chaurasia 2 years ago committed by GitHub
parent e9ab157330
commit 936414c615
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -108,7 +108,7 @@ yolo predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg"
#### Python
YOLOv8 may also be used directly in a Python environment, and accepts the
same [arguments](https://docs.ultralytics.com/config/) as in the CLI example above:
same [arguments](https://docs.ultralytics.com/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO

@ -70,7 +70,7 @@ YOLOv8 可以直接在命令行界面CLI中使用 `yolo` 命令运行:
yolo predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg"
```
`yolo`可以用于各种任务和模式,并接受额外的参数,例如 `imgsz=640`。参见 YOLOv8 [文档](https://docs.ultralytics.com)中可用`yolo`[参数](https://docs.ultralytics.com/config/)的完整列表。
`yolo`可以用于各种任务和模式,并接受额外的参数,例如 `imgsz=640`。参见 YOLOv8 [文档](https://docs.ultralytics.com)中可用`yolo`[参数](https://docs.ultralytics.com/cfg/)的完整列表。
```bash
yolo task=detect mode=train model=yolov8n.pt args...
@ -79,7 +79,7 @@ yolo task=detect mode=train model=yolov8n.pt args...
export yolov8n.pt format=onnx args...
```
YOLOv8 也可以在 Python 环境中直接使用,并接受与上面 CLI 例子中相同的[参数](https://docs.ultralytics.com/config/)
YOLOv8 也可以在 Python 环境中直接使用,并接受与上面 CLI 例子中相同的[参数](https://docs.ultralytics.com/cfg/)
```python
from ultralytics import YOLO

@ -167,7 +167,7 @@ Default arguments can be overriden by simply passing them as arguments in the CL
=== "Example 2"
Predict a YouTube video using a pretrained segmentation model at image size 320:
```bash
yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320
yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320
```
=== "Example 3"

@ -101,7 +101,7 @@
"source": [
"# 1. Predict\n",
"\n",
"YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See a full list of available `yolo` [arguments](https://docs.ultralytics.com/config/) in the YOLOv8 [Docs](https://docs.ultralytics.com).\n"
"YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See a full list of available `yolo` [arguments](https://docs.ultralytics.com/cfg/) in the YOLOv8 [Docs](https://docs.ultralytics.com).\n"
]
},
{

@ -127,7 +127,3 @@ def test_workflow():
model.val()
model.predict(SOURCE)
model.export(format="onnx", opset=12) # export a model to ONNX format
if __name__ == "__main__":
test_predict_img()

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
__version__ = "8.0.17"
__version__ = "8.0.18"
from ultralytics.yolo.engine.model import YOLO
from ultralytics.yolo.utils import ops

@ -24,7 +24,7 @@ yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=100
```
They may also be used directly in a Python environment, and accepts the same
[arguments](https://docs.ultralytics.com/config/) as in the CLI example above:
[arguments](https://docs.ultralytics.com/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO

@ -222,7 +222,8 @@ class AutoBackend(nn.Module):
nhwc = model.runtime.startswith("tensorflow")
'''
else:
raise NotImplementedError(f'ERROR: {w} is not a supported format')
raise NotImplementedError(f"ERROR: '{w}' is not a supported format. For supported formats see "
f"https://docs.ultralytics.com/reference/nn/")
# class names
if 'names' not in locals():

@ -28,7 +28,7 @@ CLI_HELP_MSG = \
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
2. Predict a YouTube video using a pretrained segmentation model at image size 320:
yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320
yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320
3. Val a pretrained detection model at batch-size 1 and image size 640:
yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
@ -126,13 +126,13 @@ def merge_equals_args(args: List[str]) -> List[str]:
"""
new_args = []
for i, arg in enumerate(args):
if arg == '=' and 0 < i < len(args) - 1:
if arg == '=' and 0 < i < len(args) - 1: # merge ['arg', '=', 'val']
new_args[-1] += f"={args[i + 1]}"
del args[i + 1]
elif arg.endswith('=') and i < len(args) - 1:
elif arg.endswith('=') and i < len(args) - 1 and '=' not in args[i + 1]: # merge ['arg=', 'val']
new_args.append(f"{arg}{args[i + 1]}")
del args[i + 1]
elif arg.startswith('=') and i > 0:
elif arg.startswith('=') and i > 0: # merge ['arg', '=val']
new_args[-1] += arg
else:
new_args.append(arg)
@ -178,7 +178,7 @@ def entrypoint(debug=False):
if '=' in a:
try:
re.sub(r' *= *', '=', a) # remove spaces around equals sign
k, v = a.split('=')
k, v = a.split('=', 1) # split on first '=' sign
if k == 'cfg': # custom.yaml passed
LOGGER.info(f"{PREFIX}Overriding {DEFAULT_CFG_PATH} with {v}")
overrides = {k: val for k, val in yaml_load(v).items() if k != 'cfg'}

@ -59,8 +59,9 @@ line_thickness: 3 # bounding box thickness (pixels)
visualize: False # visualize model features
augment: False # apply image augmentation to prediction sources
agnostic_nms: False # class-agnostic NMS
retina_masks: False # use high-resolution segmentation masks
classes: null # filter results by class, i.e. class=0, or class=[0,2,3]
retina_masks: False # use high-resolution segmentation masks
boxes: True # Show boxes in segmentation predictions
# Export settings ------------------------------------------------------------------------------------------------------
format: torchscript # format to export to

@ -28,7 +28,7 @@ from PIL import ExifTags, Image, ImageOps
from torch.utils.data import DataLoader, Dataset, dataloader, distributed
from tqdm import tqdm
from ultralytics.yolo.data.utils import check_dataset, unzip_file
from ultralytics.yolo.data.utils import check_det_dataset, unzip_file
from ultralytics.yolo.utils import (DATASETS_DIR, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, is_colab, is_dir_writeable,
is_kaggle)
from ultralytics.yolo.utils.checks import check_requirements, check_yaml
@ -1061,7 +1061,7 @@ class HUBDatasetStats():
except Exception as e:
raise Exception("error/HUB/dataset_stats/yaml_load") from e
check_dataset(data, autodownload) # download dataset if missing
check_det_dataset(data, autodownload) # download dataset if missing
self.hub_dir = Path(data['path'] + '-hub')
self.im_dir = self.hub_dir / 'images'
self.im_dir.mkdir(parents=True, exist_ok=True) # makes /images

@ -185,7 +185,7 @@ def polygons2masks_overlap(imgsz, segments, downsample_ratio=1):
return masks, index
def check_dataset_yaml(dataset, autodownload=True):
def check_det_dataset(dataset, autodownload=True):
# Download, check and/or unzip dataset if not found locally
data = check_file(dataset)
@ -254,7 +254,7 @@ def check_dataset_yaml(dataset, autodownload=True):
return data # dictionary
def check_dataset(dataset: str):
def check_cls_dataset(dataset: str):
"""
Check a classification dataset such as Imagenet.

@ -69,31 +69,25 @@ from ultralytics.nn.modules import Detect, Segment
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
from ultralytics.yolo.data.utils import check_dataset
from ultralytics.yolo.data.utils import check_det_dataset
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, callbacks, colorstr, get_default_args, yaml_save
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
from ultralytics.yolo.utils.files import file_size
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, select_device, smart_inference_mode
from ultralytics.yolo.utils.torch_utils import guess_task_from_model_yaml, select_device, smart_inference_mode
MACOS = platform.system() == 'Darwin' # macOS environment
def export_formats():
# YOLOv8 export formats
x = [
['PyTorch', '-', '.pt', True, True],
['TorchScript', 'torchscript', '.torchscript', True, True],
['ONNX', 'onnx', '.onnx', True, True],
['OpenVINO', 'openvino', '_openvino_model', True, False],
['TensorRT', 'engine', '.engine', False, True],
['CoreML', 'coreml', '.mlmodel', True, False],
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
['TensorFlow GraphDef', 'pb', '.pb', True, True],
['TensorFlow Lite', 'tflite', '.tflite', True, False],
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
['TensorFlow.js', 'tfjs', '_web_model', False, False],
['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
x = [['PyTorch', '-', '.pt', True, True], ['TorchScript', 'torchscript', '.torchscript', True, True],
['ONNX', 'onnx', '.onnx', True, True], ['OpenVINO', 'openvino', '_openvino_model', True, False],
['TensorRT', 'engine', '.engine', False, True], ['CoreML', 'coreml', '.mlmodel', True, False],
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
['TensorFlow GraphDef', 'pb', '.pb', True, True], ['TensorFlow Lite', 'tflite', '.tflite', True, False],
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
['TensorFlow.js', 'tfjs', '_web_model', False, False], ['PaddlePaddle', 'paddle', '_paddle_model', True, True]]
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
@ -135,7 +129,7 @@ class Exporter:
overrides (dict, optional): Configuration overrides. Defaults to None.
"""
self.args = get_cfg(cfg, overrides)
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
self.callbacks = defaultdict(list, {k: v for k, v in callbacks.default_callbacks.items()}) # add callbacks
callbacks.add_integration_callbacks(self)
@smart_inference_mode()
@ -241,7 +235,7 @@ class Exporter:
# Finish
f = [str(x) for x in f if x] # filter out '' and None
if any(f):
task = guess_task_from_head(model.yaml["head"][-1][-2])
task = guess_task_from_model_yaml(model)
s = "-WARNING ⚠️ not yet supported for YOLOv8 exported models"
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
@ -570,7 +564,7 @@ class Exporter:
if n >= n_images:
break
dataset = LoadImages(check_dataset(check_yaml(data))['train'], imgsz=imgsz, auto=False)
dataset = LoadImages(check_det_dataset(check_yaml(data))['train'], imgsz=imgsz, auto=False)
converter.representative_dataset = lambda: representative_dataset_gen(dataset, n_images=100)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.target_spec.supported_types = []

@ -6,9 +6,9 @@ from ultralytics import yolo # noqa
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, yaml_load
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, callbacks, yaml_load
from ultralytics.yolo.utils.checks import check_yaml
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, smart_inference_mode
from ultralytics.yolo.utils.torch_utils import guess_task_from_model_yaml, smart_inference_mode
# Map head to model, trainer, validator, and predictor classes
MODEL_MAP = {
@ -68,7 +68,7 @@ class YOLO:
"""
cfg = check_yaml(cfg) # check YAML
cfg_dict = yaml_load(cfg, append_filename=True) # model dict
self.task = guess_task_from_head(cfg_dict["head"][-1][-2])
self.task = guess_task_from_model_yaml(cfg_dict)
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \
self._guess_ops_from_task(self.task)
self.model = self.ModelClass(cfg_dict, verbose=verbose) # initialize
@ -228,6 +228,12 @@ class YOLO:
"""
return self.model.names
def add_callback(self, event: str, func):
"""
Add callback
"""
callbacks.default_callbacks[event].append(func)
@staticmethod
def _reset_ckpt_args(args):
args.pop("project", None)

@ -88,7 +88,7 @@ class BasePredictor:
self.vid_path, self.vid_writer = None, None
self.annotator = None
self.data_path = None
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
self.callbacks = defaultdict(list, {k: v for k, v in callbacks.default_callbacks.items()}) # add callbacks
callbacks.add_integration_callbacks(self)
def preprocess(self, img):
@ -172,16 +172,17 @@ class BasePredictor:
# setup source. Run every time predict is called
self.setup_source(source)
# check if save_dir/ label file exists
if self.args.save:
if self.args.save or self.args.save_txt:
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
# warmup model
if not self.done_warmup:
self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.bs, 3, *self.imgsz))
self.done_warmup = True
self.seen, self.windows, self.dt = 0, [], (ops.Profile(), ops.Profile(), ops.Profile())
self.seen, self.windows, self.dt, self.batch = 0, [], (ops.Profile(), ops.Profile(), ops.Profile()), None
for batch in self.dataset:
self.run_callbacks("on_predict_batch_start")
self.batch = batch
path, im, im0s, vid_cap, s = batch
visualize = increment_path(self.save_dir / Path(path).stem, mkdir=True) if self.args.visualize else False
with self.dt[0]:
@ -195,13 +196,13 @@ class BasePredictor:
# postprocess
with self.dt[2]:
results = self.postprocess(preds, im, im0s, self.classes)
self.results = self.postprocess(preds, im, im0s, self.classes)
for i in range(len(im)):
p, im0 = (path[i], im0s[i]) if self.webcam or self.from_img else (path, im0s)
p = Path(p)
if verbose or self.args.save or self.args.save_txt or self.args.show:
s += self.write_results(i, results, (p, im, im0))
s += self.write_results(i, self.results, (p, im, im0))
if self.args.show:
self.show(p)
@ -209,22 +210,21 @@ class BasePredictor:
if self.args.save:
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
yield from results
self.run_callbacks("on_predict_batch_end")
yield from self.results
# Print time (inference-only)
if verbose:
LOGGER.info(f"{s}{'' if len(preds) else '(no detections), '}{self.dt[1].dt * 1E3:.1f}ms")
self.run_callbacks("on_predict_batch_end")
# Print results
if verbose and self.seen:
t = tuple(x.t / self.seen * 1E3 for x in self.dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms postprocess per image at shape '
f'{(1, 3, *self.imgsz)}' % t)
if self.args.save_txt or self.args.save:
s = f"\n{len(list(self.save_dir.glob('labels/*.txt')))} labels saved to {self.save_dir / 'labels'}" \
if self.args.save_txt else ''
nl = len(list(self.save_dir.glob('labels/*.txt'))) # number of labels
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
self.run_callbacks("on_predict_end")

@ -20,19 +20,18 @@ from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import lr_scheduler
from tqdm import tqdm
import ultralytics.yolo.utils as utils
from ultralytics import __version__
from ultralytics.nn.tasks import attempt_load_one_weight
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.data.utils import check_cls_dataset, check_det_dataset
from ultralytics.yolo.utils import (DEFAULT_CFG_PATH, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, callbacks, colorstr,
yaml_save)
emojis, yaml_save)
from ultralytics.yolo.utils.autobatch import check_train_batch_size
from ultralytics.yolo.utils.checks import check_file, check_imgsz, print_args
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command
from ultralytics.yolo.utils.files import get_latest_run, increment_path
from ultralytics.yolo.utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, init_seeds, one_cycle,
strip_optimizer)
select_device, strip_optimizer)
class BaseTrainer:
@ -81,7 +80,7 @@ class BaseTrainer:
overrides (dict, optional): Configuration overrides. Defaults to None.
"""
self.args = get_cfg(cfg, overrides)
self.device = utils.torch_utils.select_device(self.args.device, self.args.batch)
self.device = select_device(self.args.device, self.args.batch)
self.check_resume()
self.console = LOGGER
self.validator = None
@ -120,9 +119,11 @@ class BaseTrainer:
self.model = self.args.model
self.data = self.args.data
if self.data.endswith(".yaml"):
self.data = check_dataset_yaml(self.data)
self.data = check_det_dataset(self.data)
elif self.args.task == 'classify':
self.data = check_cls_dataset(self.data)
else:
self.data = check_dataset(self.data)
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' not found ❌"))
self.trainset, self.testset = self.get_dataset(self.data)
self.ema = None
@ -140,7 +141,7 @@ class BaseTrainer:
self.plot_idx = [0, 1, 2]
# Callbacks
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
self.callbacks = defaultdict(list, {k: v for k, v in callbacks.default_callbacks.items()}) # add callbacks
if RANK in {0, -1}:
callbacks.add_integration_callbacks(self)

@ -9,8 +9,8 @@ from tqdm import tqdm
from ultralytics.nn.autobackend import AutoBackend
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.utils import DEFAULT_CFG_PATH, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, callbacks
from ultralytics.yolo.data.utils import check_cls_dataset, check_det_dataset
from ultralytics.yolo.utils import DEFAULT_CFG_PATH, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, callbacks, emojis
from ultralytics.yolo.utils.checks import check_imgsz
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.ops import Profile
@ -70,7 +70,7 @@ class BaseValidator:
if self.args.conf is None:
self.args.conf = 0.001 # default conf=0.001
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
self.callbacks = defaultdict(list, {k: v for k, v in callbacks.default_callbacks.items()}) # add callbacks
@smart_inference_mode()
def __call__(self, trainer=None, model=None):
@ -109,9 +109,11 @@ class BaseValidator:
f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
if isinstance(self.args.data, str) and self.args.data.endswith(".yaml"):
self.data = check_dataset_yaml(self.args.data)
self.data = check_det_dataset(self.args.data)
elif self.args.task == 'classify':
self.data = check_cls_dataset(self.args.data)
else:
self.data = check_dataset(self.args.data)
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' not found ❌"))
if self.device.type == 'cpu':
self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading

@ -68,7 +68,7 @@ HELP_MSG = \
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
- Predict a YouTube video using a pretrained segmentation model at image size 320:
yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320
yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320
- Val a pretrained detection model at batch-size 1 and image size 640:
yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
@ -109,6 +109,9 @@ class IterableSimpleNamespace(SimpleNamespace):
def __str__(self):
return '\n'.join(f"{k}={v}" for k, v in vars(self).items())
def get(self, key, default=None):
return getattr(self, key, default)
# Default configuration
with open(DEFAULT_CFG_PATH, errors='ignore') as f:

@ -106,36 +106,36 @@ def on_export_end(exporter):
default_callbacks = {
# Run in trainer
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_pretrain_routine_end': on_pretrain_routine_end,
'on_train_start': on_train_start,
'on_train_epoch_start': on_train_epoch_start,
'on_train_batch_start': on_train_batch_start,
'optimizer_step': optimizer_step,
'on_before_zero_grad': on_before_zero_grad,
'on_train_batch_end': on_train_batch_end,
'on_train_epoch_end': on_train_epoch_end,
'on_fit_epoch_end': on_fit_epoch_end, # fit = train + val
'on_model_save': on_model_save,
'on_train_end': on_train_end,
'on_params_update': on_params_update,
'teardown': teardown,
'on_pretrain_routine_start': [on_pretrain_routine_start],
'on_pretrain_routine_end': [on_pretrain_routine_end],
'on_train_start': [on_train_start],
'on_train_epoch_start': [on_train_epoch_start],
'on_train_batch_start': [on_train_batch_start],
'optimizer_step': [optimizer_step],
'on_before_zero_grad': [on_before_zero_grad],
'on_train_batch_end': [on_train_batch_end],
'on_train_epoch_end': [on_train_epoch_end],
'on_fit_epoch_end': [on_fit_epoch_end], # fit = train + val
'on_model_save': [on_model_save],
'on_train_end': [on_train_end],
'on_params_update': [on_params_update],
'teardown': [teardown],
# Run in validator
'on_val_start': on_val_start,
'on_val_batch_start': on_val_batch_start,
'on_val_batch_end': on_val_batch_end,
'on_val_end': on_val_end,
'on_val_start': [on_val_start],
'on_val_batch_start': [on_val_batch_start],
'on_val_batch_end': [on_val_batch_end],
'on_val_end': [on_val_end],
# Run in predictor
'on_predict_start': on_predict_start,
'on_predict_batch_start': on_predict_batch_start,
'on_predict_batch_end': on_predict_batch_end,
'on_predict_end': on_predict_end,
'on_predict_start': [on_predict_start],
'on_predict_batch_start': [on_predict_batch_start],
'on_predict_batch_end': [on_predict_batch_end],
'on_predict_end': [on_predict_end],
# Run in exporter
'on_export_start': on_export_start,
'on_export_end': on_export_end}
'on_export_start': [on_export_start],
'on_export_end': [on_export_end]}
def add_integration_callbacks(instance):

@ -307,18 +307,20 @@ def strip_optimizer(f='best.pt', s=''):
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
def guess_task_from_head(head):
task = None
if head.lower() in ["classify", "classifier", "cls", "fc"]:
task = "classify"
if head.lower() in ["detect"]:
task = "detect"
if head.lower() in ["segment"]:
task = "segment"
if not task:
raise SyntaxError("task or model not recognized! Please refer the docs at : ") # TODO: add docs links
def guess_task_from_model_yaml(model):
try:
cfg = model if isinstance(model, dict) else model.yaml # model cfg dict
m = cfg["head"][-1][-2].lower() # output module name
task = None
if m in ["classify", "classifier", "cls", "fc"]:
task = "classify"
if m in ["detect"]:
task = "detect"
if m in ["segment"]:
task = "segment"
except Exception as e:
raise SyntaxError('Unknown task. Define task explicitly, i.e. task=detect when running your command. '
'Valid tasks are detect, segment, classify.') from e
return task
@ -374,14 +376,36 @@ def profile(input, ops, n=10, device=None):
class EarlyStopping:
# early stopper
"""
Early stopping class that stops training when a specified number of epochs have passed without improvement.
"""
def __init__(self, patience=30):
"""
Initialize early stopping object
Args:
patience (int, optional): Number of epochs to wait after fitness stops improving before stopping. Default is 30.
"""
self.best_fitness = 0.0 # i.e. mAP
self.best_epoch = 0
self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
self.possible_stop = False # possible stop may occur next epoch
def __call__(self, epoch, fitness):
"""
Check whether to stop training
Args:
epoch (int): Current epoch of training
fitness (float): Fitness value of current epoch
Returns:
bool: True if training should stop, False otherwise
"""
if fitness is None: # check if fitness=None (happens when val=False)
return False
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
self.best_epoch = epoch
self.best_fitness = fitness

@ -10,6 +10,7 @@ class ClassificationValidator(BaseValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
super().__init__(dataloader, save_dir, pbar, logger, args)
self.args.task = 'classify'
self.metrics = ClassifyMetrics()
def get_desc(self):

@ -20,6 +20,7 @@ class DetectionValidator(BaseValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
super().__init__(dataloader, save_dir, pbar, logger, args)
self.args.task = 'detect'
self.data_dict = yaml_load(check_file(self.args.data), append_filename=True) if self.args.data else None
self.is_coco = False
self.class_map = None

@ -87,7 +87,7 @@ class SegmentationPredictor(DetectionPredictor):
c = int(cls) # integer class
label = None if self.args.hide_labels else (
self.model.names[c] if self.args.hide_conf else f'{self.model.names[c]} {conf:.2f}')
self.annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True))
self.annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True)) if self.args.boxes else None
if self.args.save_crop:
imc = im0.copy()
save_one_box(d.xyxy,

@ -19,7 +19,7 @@ class SegmentationValidator(DetectionValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
super().__init__(dataloader, save_dir, pbar, logger, args)
self.args.task = "segment"
self.args.task = 'segment'
self.metrics = SegmentMetrics(save_dir=self.save_dir)
def preprocess(self, batch):

Loading…
Cancel
Save