ultralytics 8.0.40
TensorRT metadata and Results visualizer (#1014)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Bogdan Gheorghe <112427971+bogdan-galileo@users.noreply.github.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Jaap van de Loosdrecht <jaap@vdlmv.nl> Co-authored-by: Noobtoss <96134731+Noobtoss@users.noreply.github.com> Co-authored-by: nerdyespresso <106761627+nerdyespresso@users.noreply.github.com>
This commit is contained in:
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
__version__ = "8.0.39"
|
||||
__version__ = "8.0.40"
|
||||
|
||||
from ultralytics.yolo.engine.model import YOLO
|
||||
from ultralytics.yolo.utils.checks import check_yolo as checks
|
||||
|
@ -29,8 +29,81 @@ They may also be used directly in a Python environment, and accepts the same
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.yaml") # build a YOLOv8n model from scratch
|
||||
|
||||
model = YOLO("model.yaml") # build a YOLOv8n model from scratch
|
||||
# YOLO("model.pt") use pre-trained model if available
|
||||
model.info() # display model information
|
||||
model.train(data="coco128.yaml", epochs=100) # train the model
|
||||
```
|
||||
|
||||
## Pre-trained Model Architectures
|
||||
|
||||
Ultralytics supports many model architectures. Visit [models](#) page to view detailed information and usage.
|
||||
Any of these models can be used by loading their configs or pretrained checkpoints if available.
|
||||
|
||||
<b>What to add your model architecture?</b> [Here's](#) how you can contribute
|
||||
|
||||
### 1. YOLOv8
|
||||
|
||||
**About** - Cutting edge Detection, Segmentation and Classification models developed by Ultralytics. </br>
|
||||
**Citation** -
|
||||
Available Models:
|
||||
|
||||
- Detection - `yolov8n`, `yolov8s`, `yolov8m`, `yolov8l`, `yolov8x`
|
||||
- Instance Segmentation - `yolov8n-seg`, `yolov8s-seg`, `yolov8m-seg`, `yolov8l-seg`, `yolov8x-seg`
|
||||
- Classification - `yolov8n-cls`, `yolov8s-cls`, `yolov8m-cls`, `yolov8l-cls`, `yolov8x-cls`
|
||||
|
||||
<details><summary>Performance</summary>
|
||||
|
||||
### Detection
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
|
||||
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
|
||||
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
|
||||
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
|
||||
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
|
||||
|
||||
### Segmentation
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
|
||||
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
|
||||
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
|
||||
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
|
||||
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
||||
|
||||
### Classification
|
||||
|
||||
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
||||
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
||||
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
|
||||
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
|
||||
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
|
||||
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
|
||||
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
|
||||
|
||||
</details>
|
||||
|
||||
### 2. YOLOv5u
|
||||
|
||||
**About** - Anchor-free YOLOv5 models with new detection head and better speed-accuracy tradeoff </br>
|
||||
**Citation** -
|
||||
Available Models:
|
||||
|
||||
- Detection - `yolov5nu`, `yolov5su`, `yolov5mu`, `yolov5lu`, `yolov5xu`
|
||||
|
||||
<details><summary>Performance</summary>
|
||||
|
||||
### Detection
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| -------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv5nu](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5nu.pt) | 640 | 34.3 | 73.6 | 1.06 | 2.6 | 7.7 |
|
||||
| [YOLOv5su](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5su.pt) | 640 | 43.0 | 120.7 | 1.27 | 9.1 | 24.0 |
|
||||
| [YOLOv5mu](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5mu.pt) | 640 | 49.0 | 233.9 | 1.86 | 25.1 | 64.2 |
|
||||
| [YOLOv5lu](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5lu.pt) | 640 | 52.2 | 408.4 | 2.50 | 53.2 | 135.0 |
|
||||
| [YOLOv5xu](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5xu.pt) | 640 | 53.2 | 763.2 | 3.81 | 97.2 | 246.4 |
|
||||
|
||||
</details>
|
||||
|
@ -24,9 +24,12 @@ def check_class_names(names):
|
||||
# Check class names. Map imagenet class codes to human-readable names if required. Convert lists to dicts.
|
||||
if isinstance(names, list): # names is a list
|
||||
names = dict(enumerate(names)) # convert to dict
|
||||
if isinstance(names[0], str) and names[0].startswith('n0'): # imagenet class codes, i.e. 'n01440764'
|
||||
map = yaml_load(ROOT / 'yolo/data/datasets/ImageNet.yaml')['map'] # human-readable names
|
||||
names = {k: map[v] for k, v in names.items()}
|
||||
if isinstance(names, dict):
|
||||
if not all(isinstance(k, int) for k in names.keys()): # convert string keys to int, i.e. '0' to 0
|
||||
names = {int(k): v for k, v in names.items()}
|
||||
if isinstance(names[0], str) and names[0].startswith('n0'): # imagenet class codes, i.e. 'n01440764'
|
||||
map = yaml_load(ROOT / 'yolo/data/datasets/ImageNet.yaml')['map'] # human-readable names
|
||||
names = {k: map[v] for k, v in names.items()}
|
||||
return names
|
||||
|
||||
|
||||
@ -129,7 +132,6 @@ class AutoBackend(nn.Module):
|
||||
if batch_dim.is_static:
|
||||
batch_size = batch_dim.get_length()
|
||||
executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
|
||||
stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata
|
||||
elif engine: # TensorRT
|
||||
LOGGER.info(f'Loading {w} for TensorRT inference...')
|
||||
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
|
||||
@ -138,7 +140,14 @@ class AutoBackend(nn.Module):
|
||||
device = torch.device('cuda:0')
|
||||
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
|
||||
logger = trt.Logger(trt.Logger.INFO)
|
||||
# Read file
|
||||
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
|
||||
# Read metadata length
|
||||
meta_len = int.from_bytes(f.read(4), byteorder='little')
|
||||
# Read metadata
|
||||
meta = json.loads(f.read(meta_len).decode('utf-8'))
|
||||
stride, names = int(meta['stride']), meta['names']
|
||||
# Read engine
|
||||
model = runtime.deserialize_cuda_engine(f.read())
|
||||
context = model.create_execution_context()
|
||||
bindings = OrderedDict()
|
||||
@ -216,7 +225,7 @@ class AutoBackend(nn.Module):
|
||||
meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))
|
||||
stride, names = int(meta['stride']), meta['names']
|
||||
elif tfjs: # TF.js
|
||||
raise NotImplementedError('ERROR: YOLOv8 TF.js inference is not supported')
|
||||
raise NotImplementedError('YOLOv8 TF.js inference is not supported')
|
||||
elif paddle: # PaddlePaddle
|
||||
LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
|
||||
check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
|
||||
@ -245,7 +254,16 @@ class AutoBackend(nn.Module):
|
||||
"See https://docs.ultralytics.com/tasks/detection/#export for help."
|
||||
f"\n\n{EXPORT_FORMATS_TABLE}")
|
||||
|
||||
# class names
|
||||
# Load external metadata YAML
|
||||
if xml or saved_model or paddle:
|
||||
metadata = Path(w).parent / 'metadata.yaml'
|
||||
if metadata.exists():
|
||||
metadata = yaml_load(metadata)
|
||||
stride, names = int(metadata['stride']), metadata['names'] # load metadata
|
||||
else:
|
||||
LOGGER.warning(f"WARNING ⚠️ Metadata not found at '{metadata}'")
|
||||
|
||||
# Check names
|
||||
if 'names' not in locals(): # names missing
|
||||
names = yaml_load(check_yaml(data))['names'] if data else {i: f'class{i}' for i in range(999)} # assign
|
||||
names = check_class_names(names)
|
||||
@ -340,7 +358,7 @@ class AutoBackend(nn.Module):
|
||||
if len(self.output_details) == 2: # segment
|
||||
y = [y[1], np.transpose(y[0], (0, 3, 1, 2))]
|
||||
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
|
||||
y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
|
||||
# y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
|
||||
|
||||
if isinstance(y, (list, tuple)):
|
||||
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
|
||||
@ -394,18 +412,3 @@ class AutoBackend(nn.Module):
|
||||
types[8] &= not types[9] # tflite &= not edgetpu
|
||||
triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
|
||||
return types + [triton]
|
||||
|
||||
@staticmethod
|
||||
def _load_metadata(f=Path('path/to/meta.yaml')):
|
||||
"""
|
||||
Loads the metadata from a yaml file
|
||||
|
||||
Args:
|
||||
f: The path to the metadata file.
|
||||
"""
|
||||
|
||||
# Load metadata from meta.yaml if it exists
|
||||
if f.exists():
|
||||
d = yaml_load(f)
|
||||
return d['stride'], d['names'] # assign stride, names
|
||||
return None, None
|
||||
|
@ -248,6 +248,9 @@ class SegmentationModel(DetectionModel):
|
||||
def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True):
|
||||
super().__init__(cfg, ch, nc, verbose)
|
||||
|
||||
def _forward_augment(self, x):
|
||||
raise NotImplementedError("WARNING ⚠️ SegmentationModel has not supported augment inference yet!")
|
||||
|
||||
|
||||
class ClassificationModel(BaseModel):
|
||||
# YOLOv8 classification model
|
||||
|
@ -1 +1 @@
|
||||
from .trackers import BYTETracker, BOTSORT
|
||||
from .trackers import BOTSORT, BYTETracker
|
||||
|
@ -1,8 +1,9 @@
|
||||
from ultralytics.tracker import BYTETracker, BOTSORT
|
||||
from ultralytics.yolo.utils.checks import check_requirements, check_yaml
|
||||
from ultralytics.yolo.utils import IterableSimpleNamespace, yaml_load
|
||||
import torch
|
||||
|
||||
from ultralytics.tracker import BOTSORT, BYTETracker
|
||||
from ultralytics.yolo.utils import IterableSimpleNamespace, yaml_load
|
||||
from ultralytics.yolo.utils.checks import check_requirements, check_yaml
|
||||
|
||||
TRACKER_MAP = {"bytetrack": BYTETracker, "botsort": BOTSORT}
|
||||
check_requirements('lap') # for linear_assignment
|
||||
|
||||
|
@ -1,2 +1,2 @@
|
||||
from .byte_tracker import BYTETracker
|
||||
from .bot_sort import BOTSORT
|
||||
from .byte_tracker import BYTETracker
|
||||
|
@ -1,6 +1,7 @@
|
||||
import numpy as np
|
||||
from collections import OrderedDict
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TrackState:
|
||||
New = 0
|
||||
|
@ -1,10 +1,12 @@
|
||||
from collections import deque
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..utils import matching
|
||||
from ..utils.gmc import GMC
|
||||
from ..utils.kalman_filter import KalmanFilterXYWH
|
||||
from .byte_tracker import STrack, BYTETracker
|
||||
from .basetrack import TrackState
|
||||
from .byte_tracker import BYTETracker, STrack
|
||||
|
||||
|
||||
class BOTrack(STrack):
|
||||
|
@ -1,8 +1,8 @@
|
||||
import numpy as np
|
||||
|
||||
from .basetrack import BaseTrack, TrackState
|
||||
from ..utils import matching
|
||||
from ..utils.kalman_filter import KalmanFilterXYAH
|
||||
from .basetrack import BaseTrack, TrackState
|
||||
|
||||
|
||||
class STrack(BaseTrack):
|
||||
|
@ -112,5 +112,4 @@ cfg: # for overriding defaults.yaml
|
||||
v5loader: False # use legacy YOLOv5 dataloader
|
||||
|
||||
# Tracker settings ------------------------------------------------------------------------------------------------------
|
||||
tracker: botsort # tracker type, ['botsort', 'bytetrack']
|
||||
tracker_cfg: null # path to tracker config file
|
||||
tracker: botsort.yaml # tracker type, ['botsort.yaml', 'bytetrack.yaml']
|
||||
|
@ -585,6 +585,7 @@ class Albumentations:
|
||||
new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed
|
||||
labels["img"] = new["image"]
|
||||
labels["cls"] = np.array(new["class_labels"])
|
||||
bboxes = np.array(new["bboxes"])
|
||||
labels["instances"].update(bboxes=bboxes)
|
||||
return labels
|
||||
|
||||
|
@ -18,8 +18,8 @@ TensorFlow.js | `tfjs` | yolov8n_web_model/
|
||||
PaddlePaddle | `paddle` | yolov8n_paddle_model/
|
||||
|
||||
Requirements:
|
||||
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
||||
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
||||
$ pip install -r requirements.txt coremltools onnx onnxsim onnxruntime openvino-dev tensorflow-cpu # CPU
|
||||
$ pip install -r requirements.txt coremltools onnx onnxsim onnxruntime-gpu openvino-dev tensorflow # GPU
|
||||
|
||||
Python:
|
||||
from ultralytics import YOLO
|
||||
@ -69,13 +69,14 @@ from ultralytics.nn.tasks import DetectionModel, SegmentationModel
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
|
||||
from ultralytics.yolo.data.utils import IMAGENET_MEAN, IMAGENET_STD, check_det_dataset
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, __version__, callbacks, colorstr, get_default_args, yaml_save
|
||||
from ultralytics.yolo.utils import (DEFAULT_CFG, LINUX, LOGGER, MACOS, WINDOWS, __version__, callbacks, colorstr,
|
||||
get_default_args, yaml_save)
|
||||
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
|
||||
from ultralytics.yolo.utils.files import file_size
|
||||
from ultralytics.yolo.utils.ops import Profile
|
||||
from ultralytics.yolo.utils.torch_utils import get_latest_opset, select_device, smart_inference_mode
|
||||
|
||||
MACOS = platform.system() == 'Darwin' # macOS environment
|
||||
CUDA = torch.cuda.is_available()
|
||||
|
||||
|
||||
def export_formats():
|
||||
@ -229,27 +230,24 @@ class Exporter:
|
||||
if coreml: # CoreML
|
||||
f[4], _ = self._export_coreml()
|
||||
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
|
||||
LOGGER.warning('WARNING ⚠️ YOLOv8 TensorFlow export support is still under development. '
|
||||
LOGGER.warning('WARNING ⚠️ YOLOv8 TensorFlow export is still under development. '
|
||||
'Please consider contributing to the effort if you have TF expertise. Thank you!')
|
||||
nms = False
|
||||
f[5], s_model = self._export_saved_model(nms=nms or self.args.agnostic_nms or tfjs,
|
||||
agnostic_nms=self.args.agnostic_nms or tfjs)
|
||||
|
||||
debug = False
|
||||
if debug:
|
||||
if pb or tfjs: # pb prerequisite to tfjs
|
||||
f[6], _ = self._export_pb(s_model)
|
||||
if tflite or edgetpu:
|
||||
f[7], _ = self._export_tflite(s_model,
|
||||
int8=self.args.int8 or edgetpu,
|
||||
data=self.args.data,
|
||||
nms=nms,
|
||||
agnostic_nms=self.args.agnostic_nms)
|
||||
if edgetpu:
|
||||
f[8], _ = self._export_edgetpu()
|
||||
self._add_tflite_metadata(f[8] or f[7])
|
||||
if tfjs:
|
||||
f[9], _ = self._export_tfjs()
|
||||
if pb or tfjs: # pb prerequisite to tfjs
|
||||
f[6], _ = self._export_pb(s_model)
|
||||
if tflite or edgetpu:
|
||||
f[7] = str(Path(f[5]) / (self.file.stem + '_float16.tflite'))
|
||||
# f[7], _ = self._export_tflite(s_model,
|
||||
# int8=self.args.int8 or edgetpu,
|
||||
# data=self.args.data,
|
||||
# nms=nms,
|
||||
# agnostic_nms=self.args.agnostic_nms)
|
||||
if edgetpu:
|
||||
f[8], _ = self._export_edgetpu(tflite_model=f[7])
|
||||
if tfjs:
|
||||
f[9], _ = self._export_tfjs()
|
||||
if paddle: # PaddlePaddle
|
||||
f[10], _ = self._export_paddle()
|
||||
|
||||
@ -258,13 +256,14 @@ class Exporter:
|
||||
if any(f):
|
||||
f = str(Path(f[-1]))
|
||||
square = self.imgsz[0] == self.imgsz[1]
|
||||
s = f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not work. Use " \
|
||||
f"export 'imgsz={max(self.imgsz)}' if val is required." if not square else ''
|
||||
s = '' if square else f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not " \
|
||||
f"work. Use export 'imgsz={max(self.imgsz)}' if val is required."
|
||||
imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(' ', '')
|
||||
data = f"data={self.args.data}" if model.task == 'segment' and format == 'pb' else ''
|
||||
LOGGER.info(
|
||||
f'\nExport complete ({time.time() - t:.1f}s)'
|
||||
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
||||
f"\nPredict: yolo task={model.task} mode=predict model={f} imgsz={imgsz}"
|
||||
f"\nPredict: yolo task={model.task} mode=predict model={f} imgsz={imgsz} {data}"
|
||||
f"\nValidate: yolo task={model.task} mode=val model={f} imgsz={imgsz} data={self.args.data} {s}"
|
||||
f"\nVisualize: https://netron.app")
|
||||
|
||||
@ -335,7 +334,7 @@ class Exporter:
|
||||
check_requirements('onnxsim')
|
||||
import onnxsim
|
||||
|
||||
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
||||
LOGGER.info(f'{prefix} simplifying with onnxsim {onnxsim.__version__}...')
|
||||
subprocess.run(f'onnxsim {f} {f}', shell=True)
|
||||
except Exception as e:
|
||||
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
||||
@ -358,7 +357,7 @@ class Exporter:
|
||||
framework="onnx",
|
||||
compress_to_fp16=self.args.half) # export
|
||||
ov.serialize(ov_model, f_ov) # save
|
||||
yaml_save(Path(f) / self.file.with_suffix('.yaml').name, self.metadata) # add metadata.yaml
|
||||
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
|
||||
return f, None
|
||||
|
||||
@try_export
|
||||
@ -372,7 +371,7 @@ class Exporter:
|
||||
f = str(self.file).replace(self.file.suffix, f'_paddle_model{os.sep}')
|
||||
|
||||
pytorch2paddle(module=self.model, save_dir=f, jit_type='trace', input_examples=[self.im]) # export
|
||||
yaml_save(Path(f) / self.file.with_suffix('.yaml').name, self.metadata) # add metadata.yaml
|
||||
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
|
||||
return f, None
|
||||
|
||||
@try_export
|
||||
@ -436,7 +435,7 @@ class Exporter:
|
||||
try:
|
||||
import tensorrt as trt # noqa
|
||||
except ImportError:
|
||||
if platform.system() == 'Linux':
|
||||
if LINUX:
|
||||
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
|
||||
import tensorrt as trt # noqa
|
||||
|
||||
@ -482,8 +481,16 @@ class Exporter:
|
||||
f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and self.args.half else 32} engine as {f}')
|
||||
if builder.platform_has_fast_fp16 and self.args.half:
|
||||
config.set_flag(trt.BuilderFlag.FP16)
|
||||
|
||||
# Write file
|
||||
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
|
||||
# Metadata
|
||||
meta = json.dumps(self.metadata)
|
||||
t.write(len(meta).to_bytes(4, byteorder='little', signed=True))
|
||||
t.write(meta.encode())
|
||||
# Model
|
||||
t.write(engine.serialize())
|
||||
|
||||
return f, None
|
||||
|
||||
@try_export
|
||||
@ -500,10 +507,10 @@ class Exporter:
|
||||
try:
|
||||
import tensorflow as tf # noqa
|
||||
except ImportError:
|
||||
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
|
||||
check_requirements(f"tensorflow{'' if CUDA else '-macos' if MACOS else '-cpu' if LINUX else ''}")
|
||||
import tensorflow as tf # noqa
|
||||
check_requirements(("onnx", "onnx2tf", "sng4onnx", "onnxsim", "onnx_graphsurgeon", "tflite_support"),
|
||||
cmds="--extra-index-url https://pypi.ngc.nvidia.com ")
|
||||
cmds="--extra-index-url https://pypi.ngc.nvidia.com")
|
||||
|
||||
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||||
f = str(self.file).replace(self.file.suffix, '_saved_model')
|
||||
@ -514,10 +521,11 @@ class Exporter:
|
||||
|
||||
# Export to TF SavedModel
|
||||
subprocess.run(f'onnx2tf -i {onnx} -o {f} --non_verbose', shell=True)
|
||||
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
|
||||
|
||||
# Add TFLite metadata
|
||||
for tflite_file in Path(f).rglob('*.tflite'):
|
||||
self._add_tflite_metadata(tflite_file)
|
||||
for file in Path(f).rglob('*.tflite'):
|
||||
self._add_tflite_metadata(file)
|
||||
|
||||
# Load saved_model
|
||||
keras_model = tf.saved_model.load(f, tags=None, options=None)
|
||||
@ -537,7 +545,7 @@ class Exporter:
|
||||
try:
|
||||
import tensorflow as tf # noqa
|
||||
except ImportError:
|
||||
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
|
||||
check_requirements(f"tensorflow{'' if CUDA else '-macos' if MACOS else '-cpu' if LINUX else ''}")
|
||||
import tensorflow as tf # noqa
|
||||
# from models.tf import TFModel
|
||||
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
|
||||
@ -628,11 +636,11 @@ class Exporter:
|
||||
return f, None
|
||||
|
||||
@try_export
|
||||
def _export_edgetpu(self, prefix=colorstr('Edge TPU:')):
|
||||
def _export_edgetpu(self, tflite_model='', prefix=colorstr('Edge TPU:')):
|
||||
# YOLOv8 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
||||
cmd = 'edgetpu_compiler --version'
|
||||
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
||||
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
|
||||
assert LINUX, f'export only supported on Linux. See {help_url}'
|
||||
if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
|
||||
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
|
||||
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
||||
@ -646,11 +654,11 @@ class Exporter:
|
||||
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
||||
|
||||
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
|
||||
f = str(self.file).replace(self.file.suffix, '-int8_edgetpu.tflite') # Edge TPU model
|
||||
f_tfl = str(self.file).replace(self.file.suffix, '-int8.tflite') # TFLite model
|
||||
f = str(tflite_model).replace('.tflite', '_edgetpu.tflite') # Edge TPU model
|
||||
|
||||
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {self.file.parent} {f_tfl}"
|
||||
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {self.file.parent} {tflite_model}"
|
||||
subprocess.run(cmd.split(), check=True)
|
||||
self._add_tflite_metadata(f)
|
||||
return f, None
|
||||
|
||||
@try_export
|
||||
@ -681,6 +689,7 @@ class Exporter:
|
||||
f_json.read_text(),
|
||||
)
|
||||
j.write(subst)
|
||||
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
|
||||
return f, None
|
||||
|
||||
def _add_tflite_metadata(self, file):
|
||||
@ -736,14 +745,6 @@ class Exporter:
|
||||
populator.populate()
|
||||
tmp_file.unlink()
|
||||
|
||||
# TODO Rename this here and in `_add_tflite_metadata`
|
||||
def _extracted_from__add_tflite_metadata_15(self, _metadata_fb, arg1, arg2):
|
||||
# Creates input info.
|
||||
result = _metadata_fb.TensorMetadataT()
|
||||
result.name = arg1
|
||||
result.description = arg2
|
||||
return result
|
||||
|
||||
def _pipeline_coreml(self, model, prefix=colorstr('CoreML Pipeline:')):
|
||||
# YOLOv8 CoreML pipeline
|
||||
import coremltools as ct # noqa
|
||||
|
@ -42,6 +42,7 @@ class YOLO:
|
||||
model (str, Path): model to load or create
|
||||
type (str): Type/version of models to use. Defaults to "v8".
|
||||
"""
|
||||
self._reset_callbacks()
|
||||
self.type = type
|
||||
self.ModelClass = None # model class
|
||||
self.TrainerClass = None # trainer class
|
||||
@ -307,3 +308,8 @@ class YOLO:
|
||||
for arg in 'augment', 'verbose', 'project', 'name', 'exist_ok', 'resume', 'batch', 'epochs', 'cache', \
|
||||
'save_json', 'half', 'v5loader', 'device', 'cfg', 'save', 'rect', 'plots', 'opset':
|
||||
args.pop(arg, None)
|
||||
|
||||
@staticmethod
|
||||
def _reset_callbacks():
|
||||
for event in callbacks.default_callbacks.keys():
|
||||
callbacks.default_callbacks[event] = [callbacks.default_callbacks[event][0]]
|
||||
|
@ -85,7 +85,6 @@ class BasePredictor:
|
||||
self.data = self.args.data # data_dict
|
||||
self.imgsz = None
|
||||
self.device = None
|
||||
self.classes = self.args.classes
|
||||
self.dataset = None
|
||||
self.vid_path, self.vid_writer = None, None
|
||||
self.annotator = None
|
||||
@ -103,7 +102,7 @@ class BasePredictor:
|
||||
def write_results(self, results, batch, print_string):
|
||||
raise NotImplementedError("print_results function needs to be implemented")
|
||||
|
||||
def postprocess(self, preds, img, orig_img, classes=None):
|
||||
def postprocess(self, preds, img, orig_img):
|
||||
return preds
|
||||
|
||||
@smart_inference_mode()
|
||||
@ -170,13 +169,13 @@ class BasePredictor:
|
||||
|
||||
# postprocess
|
||||
with self.dt[2]:
|
||||
self.results = self.postprocess(preds, im, im0s, self.classes)
|
||||
self.results = self.postprocess(preds, im, im0s)
|
||||
self.run_callbacks("on_predict_postprocess_end")
|
||||
|
||||
# visualize, save, write results
|
||||
for i in range(len(im)):
|
||||
p, im0 = (path[i], im0s[i].copy()) if self.source_type.webcam or self.source_type.from_img else (path,
|
||||
im0s)
|
||||
p, im0 = (path[i], im0s[i].copy()) if self.source_type.webcam or self.source_type.from_img \
|
||||
else (path, im0s.copy())
|
||||
p = Path(p)
|
||||
|
||||
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
|
||||
|
@ -1,9 +1,13 @@
|
||||
from copy import deepcopy
|
||||
from functools import lru_cache
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision.transforms.functional as F
|
||||
from PIL import Image
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, ops
|
||||
from ultralytics.yolo.utils.plotting import Annotator, colors
|
||||
|
||||
|
||||
class Results:
|
||||
@ -14,22 +18,24 @@ class Results:
|
||||
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
|
||||
masks (Masks, optional): A Masks object containing the detection masks.
|
||||
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
|
||||
orig_shape (tuple, optional): Original image size.
|
||||
orig_img (tuple, optional): Original image size.
|
||||
|
||||
Attributes:
|
||||
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
|
||||
masks (Masks, optional): A Masks object containing the detection masks.
|
||||
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
|
||||
orig_shape (tuple, optional): Original image size.
|
||||
orig_img (tuple, optional): Original image size.
|
||||
data (torch.Tensor): The raw masks tensor
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, boxes=None, masks=None, probs=None, orig_shape=None) -> None:
|
||||
self.boxes = Boxes(boxes, orig_shape) if boxes is not None else None # native size boxes
|
||||
self.masks = Masks(masks, orig_shape) if masks is not None else None # native size or imgsz masks
|
||||
def __init__(self, boxes=None, masks=None, probs=None, orig_img=None, names=None) -> None:
|
||||
self.orig_img = orig_img
|
||||
self.orig_shape = orig_img.shape[:2]
|
||||
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes
|
||||
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks
|
||||
self.probs = probs if probs is not None else None
|
||||
self.orig_shape = orig_shape
|
||||
self.names = names
|
||||
self.comp = ["boxes", "masks", "probs"]
|
||||
|
||||
def pandas(self):
|
||||
@ -37,7 +43,7 @@ class Results:
|
||||
# TODO masks.pandas + boxes.pandas + cls.pandas
|
||||
|
||||
def __getitem__(self, idx):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
r = Results(orig_img=self.orig_img)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
@ -53,7 +59,7 @@ class Results:
|
||||
self.probs = probs
|
||||
|
||||
def cpu(self):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
r = Results(orig_img=self.orig_img)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
@ -61,7 +67,7 @@ class Results:
|
||||
return r
|
||||
|
||||
def numpy(self):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
r = Results(orig_img=self.orig_img)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
@ -69,7 +75,7 @@ class Results:
|
||||
return r
|
||||
|
||||
def cuda(self):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
r = Results(orig_img=self.orig_img)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
@ -77,7 +83,7 @@ class Results:
|
||||
return r
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
r = Results(orig_img=self.orig_img)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
@ -118,6 +124,40 @@ class Results:
|
||||
orig_shape (tuple, optional): Original image size.
|
||||
""")
|
||||
|
||||
def visualize(self, show_conf=True, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
|
||||
"""
|
||||
Plots the given result on an input RGB image. Accepts cv2(numpy) or PIL Image
|
||||
|
||||
Args:
|
||||
show_conf (bool): Show confidence
|
||||
line_width (Float): The line width of boxes. Automatically scaled to img size if not provided
|
||||
font_size (Float): The font size of . Automatically scaled to img size if not provided
|
||||
"""
|
||||
img = deepcopy(self.orig_img)
|
||||
annotator = Annotator(img, line_width, font_size, font, pil, example)
|
||||
boxes = self.boxes
|
||||
masks = self.masks.data
|
||||
logits = self.probs
|
||||
names = self.names
|
||||
if boxes is not None:
|
||||
for d in reversed(boxes):
|
||||
cls, conf = d.cls.squeeze(), d.conf.squeeze()
|
||||
c = int(cls)
|
||||
label = (f'{names[c]}' if names else f'{c}') + (f'{conf:.2f}' if show_conf else '')
|
||||
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True))
|
||||
|
||||
if masks is not None:
|
||||
im_gpu = torch.as_tensor(img, dtype=torch.float16).permute(2, 0, 1).flip(0).contiguous()
|
||||
im_gpu = F.resize(im_gpu, masks.data.shape[1:]) / 255
|
||||
annotator.masks(masks.data, colors=[colors(x, True) for x in boxes.cls], im_gpu=im_gpu)
|
||||
|
||||
if logits is not None:
|
||||
top5i = logits.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
||||
text = f"{', '.join(f'{names[j] if names else j} {logits[j]:.2f}' for j in top5i)}, "
|
||||
annotator.text((32, 32), text, txt_color=(255, 255, 255)) # TODO: allow setting colors
|
||||
|
||||
return img
|
||||
|
||||
|
||||
class Boxes:
|
||||
"""
|
||||
|
@ -34,6 +34,7 @@ AUTOINSTALL = str(os.getenv('YOLO_AUTOINSTALL', True)).lower() == 'true' # glob
|
||||
VERBOSE = str(os.getenv('YOLO_VERBOSE', True)).lower() == 'true' # global verbose mode
|
||||
TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format
|
||||
LOGGING_NAME = 'ultralytics'
|
||||
MACOS, LINUX, WINDOWS = (platform.system() == x for x in ['Darwin', 'Linux', 'Windows']) # environment booleans
|
||||
HELP_MSG = \
|
||||
"""
|
||||
Usage examples for running YOLOv8:
|
||||
@ -393,18 +394,15 @@ def get_user_config_dir(sub_dir='Ultralytics'):
|
||||
Returns:
|
||||
Path: The path to the user config directory.
|
||||
"""
|
||||
# Get the operating system name
|
||||
os_name = platform.system()
|
||||
|
||||
# Return the appropriate config directory for each operating system
|
||||
if os_name == 'Windows':
|
||||
if WINDOWS:
|
||||
path = Path.home() / 'AppData' / 'Roaming' / sub_dir
|
||||
elif os_name == 'Darwin': # macOS
|
||||
elif MACOS: # macOS
|
||||
path = Path.home() / 'Library' / 'Application Support' / sub_dir
|
||||
elif os_name == 'Linux':
|
||||
elif LINUX:
|
||||
path = Path.home() / '.config' / sub_dir
|
||||
else:
|
||||
raise ValueError(f'Unsupported operating system: {os_name}')
|
||||
raise ValueError(f'Unsupported operating system: {platform.system()}')
|
||||
|
||||
# GCP and AWS lambda fix, only /tmp is writeable
|
||||
if not is_dir_writeable(str(path.parent)):
|
||||
@ -421,7 +419,7 @@ USER_CONFIG_DIR = get_user_config_dir() # Ultralytics settings dir
|
||||
|
||||
def emojis(string=''):
|
||||
# Return platform-dependent emoji-safe version of string
|
||||
return string.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else string
|
||||
return string.encode().decode('ascii', 'ignore') if WINDOWS else string
|
||||
|
||||
|
||||
def colorstr(*input):
|
||||
@ -617,7 +615,7 @@ def set_settings(kwargs, file=USER_CONFIG_DIR / 'settings.yaml'):
|
||||
# Set logger
|
||||
set_logging(LOGGING_NAME) # run before defining LOGGER
|
||||
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
|
||||
if platform.system() == 'Windows':
|
||||
if WINDOWS:
|
||||
for fn in LOGGER.info, LOGGER.warning:
|
||||
setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging
|
||||
|
||||
|
@ -139,6 +139,9 @@ def non_max_suppression(
|
||||
labels=(),
|
||||
max_det=300,
|
||||
nc=0, # number of classes (optional)
|
||||
max_time_img=0.05,
|
||||
max_nms=30000,
|
||||
max_wh=7680,
|
||||
):
|
||||
"""
|
||||
Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box.
|
||||
@ -160,6 +163,9 @@ def non_max_suppression(
|
||||
output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2).
|
||||
max_det (int): The maximum number of boxes to keep after NMS.
|
||||
nc (int): (optional) The number of classes output by the model. Any indices after this will be considered masks.
|
||||
max_time_img (float): The maximum time (seconds) for processing one image.
|
||||
max_nms (int): The maximum number of boxes into torchvision.ops.nms().
|
||||
max_wh (int): The maximum box width and height in pixels
|
||||
|
||||
Returns:
|
||||
(List[torch.Tensor]): A list of length batch_size, where each element is a tensor of
|
||||
@ -185,9 +191,7 @@ def non_max_suppression(
|
||||
|
||||
# Settings
|
||||
# min_wh = 2 # (pixels) minimum box width and height
|
||||
max_wh = 7680 # (pixels) maximum box width and height
|
||||
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
||||
time_limit = 0.5 + 0.05 * bs # seconds to quit after
|
||||
time_limit = 0.5 + max_time_img * bs # seconds to quit after
|
||||
redundant = True # require redundant detections
|
||||
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
||||
merge = False # use merge-NMS
|
||||
|
@ -136,7 +136,11 @@ class Annotator:
|
||||
if anchor == 'bottom': # start y from font bottom
|
||||
w, h = self.font.getsize(text) # text width, height
|
||||
xy[1] += 1 - h
|
||||
self.draw.text(xy, text, fill=txt_color, font=self.font)
|
||||
if self.pil:
|
||||
self.draw.text(xy, text, fill=txt_color, font=self.font)
|
||||
else:
|
||||
tf = max(self.lw - 1, 1) # font thickness
|
||||
cv2.putText(self.im, text, xy, 0, self.lw / 3, txt_color, thickness=tf, lineType=cv2.LINE_AA)
|
||||
|
||||
def fromarray(self, im):
|
||||
# Update self.im from a numpy array
|
||||
|
@ -18,11 +18,12 @@ class ClassificationPredictor(BasePredictor):
|
||||
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
||||
return img
|
||||
|
||||
def postprocess(self, preds, img, orig_img, classes=None):
|
||||
def postprocess(self, preds, img, orig_img):
|
||||
results = []
|
||||
for i, pred in enumerate(preds):
|
||||
shape = orig_img[i].shape if isinstance(orig_img, list) else orig_img.shape
|
||||
results.append(Results(probs=pred, orig_shape=shape[:2]))
|
||||
orig_img = orig_img[i] if isinstance(orig_img, list) else orig_img
|
||||
results.append(Results(probs=pred.softmax(0), orig_img=orig_img, names=self.model.names))
|
||||
|
||||
return results
|
||||
|
||||
def write_results(self, idx, results, batch):
|
||||
|
@ -19,7 +19,7 @@ class DetectionPredictor(BasePredictor):
|
||||
img /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
return img
|
||||
|
||||
def postprocess(self, preds, img, orig_img, classes=None):
|
||||
def postprocess(self, preds, img, orig_img):
|
||||
preds = ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
@ -29,9 +29,10 @@ class DetectionPredictor(BasePredictor):
|
||||
|
||||
results = []
|
||||
for i, pred in enumerate(preds):
|
||||
shape = orig_img[i].shape if isinstance(orig_img, list) else orig_img.shape
|
||||
orig_img = orig_img[i] if isinstance(orig_img, list) else orig_img
|
||||
shape = orig_img.shape
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
|
||||
results.append(Results(boxes=pred, orig_shape=shape[:2]))
|
||||
results.append(Results(boxes=pred, orig_img=orig_img, names=self.model.names))
|
||||
return results
|
||||
|
||||
def write_results(self, idx, results, batch):
|
||||
|
@ -10,7 +10,7 @@ from ultralytics.yolo.v8.detect.predict import DetectionPredictor
|
||||
|
||||
class SegmentationPredictor(DetectionPredictor):
|
||||
|
||||
def postprocess(self, preds, img, orig_img, classes=None):
|
||||
def postprocess(self, preds, img, orig_img):
|
||||
# TODO: filter by classes
|
||||
p = ops.non_max_suppression(preds[0],
|
||||
self.args.conf,
|
||||
@ -22,9 +22,11 @@ class SegmentationPredictor(DetectionPredictor):
|
||||
results = []
|
||||
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
|
||||
for i, pred in enumerate(p):
|
||||
shape = orig_img[i].shape if isinstance(orig_img, list) else orig_img.shape
|
||||
orig_img = orig_img[i] if isinstance(orig_img, list) else orig_img
|
||||
shape = orig_img.shape
|
||||
if not len(pred):
|
||||
results.append(Results(boxes=pred[:, :6], orig_shape=shape[:2])) # save empty boxes
|
||||
results.append(Results(boxes=pred[:, :6], orig_img=orig_img,
|
||||
names=self.model.names)) # save empty boxes
|
||||
continue
|
||||
if self.args.retina_masks:
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
|
||||
@ -32,7 +34,7 @@ class SegmentationPredictor(DetectionPredictor):
|
||||
else:
|
||||
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
|
||||
results.append(Results(boxes=pred[:, :6], masks=masks, orig_shape=shape[:2]))
|
||||
results.append(Results(boxes=pred[:, :6], masks=masks, orig_img=orig_img, names=self.model.names))
|
||||
return results
|
||||
|
||||
def write_results(self, idx, results, batch):
|
||||
|
@ -28,19 +28,8 @@ class SegmentationValidator(DetectionValidator):
|
||||
return batch
|
||||
|
||||
def init_metrics(self, model):
|
||||
val = self.data.get(self.args.split, '') # validation path
|
||||
self.is_coco = isinstance(val, str) and val.endswith(f'coco{os.sep}val2017.txt') # is COCO dataset
|
||||
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
|
||||
self.args.save_json |= self.is_coco and not self.training # run on final val if training COCO
|
||||
self.names = model.names
|
||||
self.nc = len(model.names)
|
||||
self.metrics.names = self.names
|
||||
self.metrics.plot = self.args.plots
|
||||
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
|
||||
super().init_metrics(model)
|
||||
self.plot_masks = []
|
||||
self.seen = 0
|
||||
self.jdict = []
|
||||
self.stats = []
|
||||
if self.args.save_json:
|
||||
check_requirements('pycocotools>=2.0.6')
|
||||
self.process = ops.process_mask_upsample # more accurate
|
||||
|
Reference in New Issue
Block a user