8.0.60 new HUB training syntax (#1753)

Co-authored-by: Rafael Pierre <97888102+rafaelvp-db@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Semih Demirel <85176438+semihhdemirel@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2023-04-03 02:36:58 +02:00
committed by GitHub
parent e7876e1ba9
commit 84948651cd
25 changed files with 405 additions and 122 deletions

View File

@ -6,7 +6,7 @@ Just simply clone and run
```bash
pip install -r requirements.txt
python main.py
python main.py --model yolov8n.onnx --img image.jpg
```
If you start from scratch:

View File

@ -1,3 +1,5 @@
import argparse
import cv2.dnn
import numpy as np
@ -16,9 +18,9 @@ def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
def main():
model: cv2.dnn.Net = cv2.dnn.readNetFromONNX('yolov8n.onnx')
original_image: np.ndarray = cv2.imread(str(ROOT / 'assets/bus.jpg'))
def main(onnx_model, input_image):
model: cv2.dnn.Net = cv2.dnn.readNetFromONNX(onnx_model)
original_image: np.ndarray = cv2.imread(input_image)
[height, width, _] = original_image.shape
length = max((height, width))
image = np.zeros((length, length, 3), np.uint8)
@ -71,4 +73,8 @@ def main():
if __name__ == '__main__':
main()
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='yolov8n.onnx', help='Input your onnx model.')
parser.add_argument('--img', default=str(ROOT / 'assets/bus.jpg'), help='Path to input image.')
args = parser.parse_args()
main(args.model, args.img)