Integration of v8 segmentation (#107)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
single_channel
Laughing 2 years ago committed by GitHub
parent 384f0ef1c6
commit 8406b49b49
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

14
.gitignore vendored

@ -134,3 +134,17 @@ runs/
wandb/
.DS_Store
# Neural Network weights -----------------------------------------------------------------------------------------------
*.weights
*.pt
*.pb
*.onnx
*.engine
*.mlmodel
*.torchscript
*.tflite
*.h5
*_saved_model/
*_web_model/
*_openvino_model/

@ -0,0 +1,67 @@
import torch
from ultralytics import YOLO
from ultralytics.nn.modules import Detect, Segment
def export_onnx(model, file):
# YOLOv5 ONNX export
import onnx
im = torch.zeros(1, 3, 640, 640)
model.eval()
model(im, profile=True)
for k, m in model.named_modules():
if isinstance(m, (Detect, Segment)):
m.export = True
torch.onnx.export(
model,
im,
file,
verbose=False,
opset_version=12,
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
input_names=['images'])
# Checks
model_onnx = onnx.load(file) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
# Metadata
d = {'stride': int(max(model.stride)), 'names': model.names}
for k, v in d.items():
meta = model_onnx.metadata_props.add()
meta.key, meta.value = k, str(v)
onnx.save(model_onnx, file)
if __name__ == "__main__":
model = YOLO()
print("yolov8n")
model.new("yolov8n.yaml")
print("yolov8n-seg")
model.new("yolov8n-seg.yaml")
print("yolov8s")
model.new("yolov8s.yaml")
# export_onnx(model.model, "yolov8s.onnx")
print("yolov8s-seg")
model.new("yolov8s-seg.yaml")
# export_onnx(model.model, "yolov8s-seg.onnx")
print("yolov8m")
model.new("yolov8m.yaml")
print("yolov8m-seg")
model.new("yolov8m-seg.yaml")
print("yolov8l")
model.new("yolov8l.yaml")
print("yolov8l-seg")
model.new("yolov8l-seg.yaml")
print("yolov8x")
model.new("yolov8x.yaml")
print("yolov8x-seg")
model.new("yolov8x-seg.yaml")
# n vs n-seg: 8.9GFLOPs vs 12.8GFLOPs, 3.16M vs 3.6M. ch[0] // 4 (11.9GFLOPs, 3.39M)
# s vs s-seg: 28.8GFLOPs vs 44.4GFLOPs, 11.1M vs 12.9M. ch[0] // 4 (39.5GFLOPs, 11.7M)
# m vs m-seg: 79.3GFLOPs vs 113.8GFLOPs, 25.9M vs 29.5M. ch[0] // 4 (103.GFLOPs, 27.1M)
# l vs l-seg: 165.7GFLOPs vs 226.3GFLOPs, 43.7M vs 49.6M. ch[0] // 4 (207GFLOPs, 45.7M)
# x vs x-seg: 258.5GFLOPs vs 353.0GFLOPs, 68.3M vs 77.5M. ch[0] // 4 (324GFLOPs, 71.4M)

@ -576,11 +576,11 @@ class Detections:
class Proto(nn.Module):
# YOLOv5 mask Proto module for segmentation models
# YOLOv8 mask Proto module for segmentation models
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
super().__init__()
self.cv1 = Conv(c1, c_, k=3)
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest')
self.cv2 = Conv(c_, c_, k=3)
self.cv3 = Conv(c_, c2)
@ -628,16 +628,16 @@ class Detect(nn.Module):
shape = x[0].shape # BCHW
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
if self.training:
return x, box, cls
return x
elif self.dynamic or self.shape != shape:
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
self.shape = shape
box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
y = torch.cat((dbox, cls.sigmoid()), 1)
return y if self.export else (y, (x, box, cls))
return y if self.export else (y, x)
def bias_init(self):
# Initialize Detect() biases, WARNING: requires stride availability
@ -651,19 +651,27 @@ class Detect(nn.Module):
class Segment(Detect):
# YOLOv5 Segment head for segmentation models
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=()):
super().__init__(nc, anchors, ch)
def __init__(self, nc=80, nm=32, npr=256, ch=()):
super().__init__(nc, ch)
self.nm = nm # number of masks
self.npr = npr # number of protos
self.no = 5 + nc + self.nm # number of outputs per anchor
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.proto = Proto(ch[0], self.npr, self.nm) # protos
self.detect = Detect.forward
c4 = max(ch[0] // 4, self.nm)
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
def forward(self, x):
p = self.proto(x[0])
mc = [] # mask coefficient
for i in range(self.nl):
mc.append(self.cv4[i](x[i]))
mc = torch.cat([mi.view(p.shape[0], self.nm, -1) for mi in mc], 2)
x = self.detect(self, x)
return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])
if self.training:
return x, mc, p
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
class Classify(nn.Module):

@ -101,7 +101,7 @@ class DetectionModel(BaseModel):
if isinstance(m, (Detect, Segment)):
s = 256 # 2x min stride
m.inplace = self.inplace
forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Detect)) else self.forward(x)
forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
self.stride = m.stride
m.bias_init() # only run once
@ -163,8 +163,8 @@ class DetectionModel(BaseModel):
class SegmentationModel(DetectionModel):
# YOLOv5 segmentation model
def __init__(self, cfg='yolov5s-seg.yaml', ch=3, nc=None):
super().__init__(cfg, ch, nc)
def __init__(self, cfg='yolov5s-seg.yaml', ch=3, nc=None, verbose=True):
super().__init__(cfg, ch, nc, verbose)
class ClassificationModel(BaseModel):
@ -300,7 +300,7 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
elif m in {Detect, Segment}:
args.append([ch[x] for x in f])
if m is Segment:
args[3] = make_divisible(args[3] * gw, 8)
args[2] = make_divisible(args[2] * gw, 8)
else:
c2 = ch[f]

@ -0,0 +1 @@
from . import v8

@ -3,7 +3,7 @@
# Task and Mode
task: "classify" # choices=['detect', 'segment', 'classify', 'init'] # init is a special case
mode: "train" # choice=['train', 'val', 'infer']
mode: "train" # choice=['train', 'val', 'predict']
# Train settings -------------------------------------------------------------------------------------------------------
model: null # i.e. yolov5s.pt, yolo.yaml

@ -86,7 +86,8 @@ class TaskAlignedAssigner(nn.Module):
if self.n_max_boxes == 0:
device = gt_bboxes.device
return (torch.full_like(pd_scores[..., 0], self.bg_idx).to(device), torch.zeros_like(pd_bboxes).to(device),
torch.zeros_like(pd_scores).to(device), torch.zeros_like(pd_scores[..., 0]).to(device))
torch.zeros_like(pd_scores).to(device), torch.zeros_like(pd_scores[..., 0]).to(device),
torch.zeros_like(pd_scores[..., 0]).to(device))
mask_pos, align_metric, overlaps = self.get_pos_mask(pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points,
mask_gt)
@ -103,7 +104,7 @@ class TaskAlignedAssigner(nn.Module):
norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
target_scores = target_scores * norm_align_metric
return target_labels, target_bboxes, target_scores, fg_mask.bool()
return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx
def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):
# get anchor_align metric, (b, max_num_obj, h*w)
@ -146,9 +147,6 @@ class TaskAlignedAssigner(nn.Module):
# (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(-2)
# filter invalid bboxes
# assigned topk should be unique, this is for dealing with empty labels
# since empty labels will generate index `0` through `F.one_hot`
# NOTE: but what if the topk_idxs include `0`?
is_in_topk = torch.where(is_in_topk > 1, 0, is_in_topk)
return is_in_topk.to(metrics.dtype)

@ -9,11 +9,10 @@ from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils import colorstr
from ultralytics.yolo.utils.loss import BboxLoss
from ultralytics.yolo.utils.metrics import smooth_BCE
from ultralytics.yolo.utils.ops import xywh2xyxy
from ultralytics.yolo.utils.plotting import plot_images, plot_results
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
from ultralytics.yolo.utils.torch_utils import de_parallel, strip_optimizer
from ultralytics.yolo.utils.torch_utils import de_parallel
# BaseTrainer python usage
@ -78,7 +77,8 @@ class DetectionTrainer(BaseTrainer):
return dict(zip(keys, loss_items)) if loss_items is not None else keys
def progress_string(self):
return ('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
return ('\n' + '%11s' *
(4 + len(self.loss_names))) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
def plot_training_samples(self, batch, ni):
plot_images(images=batch["img"],
@ -100,15 +100,13 @@ class Loss:
device = next(model.parameters()).device # get model device
h = model.args # hyperparameters
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
m = model.model[-1] # Detect() module
self.bce = nn.BCEWithLogitsLoss(reduction='none')
self.hyp = h
self.stride = m.stride # model strides
self.nc = m.nc # number of classes
self.nl = m.nl # number of layers
self.no = m.no
self.reg_max = m.reg_max
self.device = device
self.use_dfl = m.reg_max > 1
@ -141,12 +139,15 @@ class Loss:
def __call__(self, preds, batch):
loss = torch.zeros(3, device=self.device) # box, cls, dfl
feats, pred_distri, pred_scores = preds if len(preds) == 3 else preds[1]
feats = preds[1] if isinstance(preds, tuple) else preds
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
(self.reg_max * 4, self.nc), 1)
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
dtype = pred_scores.dtype
batch_size, grid_size = pred_scores.shape[:2]
batch_size = pred_scores.shape[0]
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
@ -159,7 +160,7 @@ class Loss:
# pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
target_labels, target_bboxes, target_scores, fg_mask = self.assigner(
_, target_bboxes, target_scores, fg_mask, _ = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)

@ -0,0 +1,42 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.00 # model depth multiple
width_multiple: 1.00 # layer channel multiple
# YOLOv8.0l backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 3, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C2f, [128, True]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C2f, [256, True]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 6, C2f, [512, True]],
[-1, 1, Conv, [512, 3, 2]], # 7-P5/32
[-1, 3, C2f, [512, True]],
[-1, 1, SPPF, [512, 5]], # 9
]
# YOLOv8.0l head
head:
[[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C2f, [512]], # 13
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C2f, [256]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P4
[-1, 3, C2f, [512]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 9], 1, Concat, [1]], # cat head P5
[-1, 3, C2f, [512]], # 23 (P5/32-large)
[[15, 18, 21], 1, Segment, [nc, 32, 256]], # Detect(P3, P4, P5)
]

@ -0,0 +1,42 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple
# YOLOv8.0m backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 3, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C2f, [128, True]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C2f, [256, True]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 6, C2f, [512, True]],
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
[-1, 3, C2f, [768, True]],
[-1, 1, SPPF, [768, 5]], # 9
]
# YOLOv8.0m head
head:
[[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C2f, [512]], # 13
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C2f, [256]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P4
[-1, 3, C2f, [512]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 9], 1, Concat, [1]], # cat head P5
[-1, 3, C2f, [768]], # 23 (P5/32-large)
[[15, 18, 21], 1, Segment, [nc, 32, 256]], # Detect(P3, P4, P5)
]

@ -4,9 +4,8 @@
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors: [[16,19], [55,65], [178,192]]
# YOLOv8n v0.0 backbone
# YOLOv8.0n backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 3, 2]], # 0-P1/2
@ -21,7 +20,7 @@ backbone:
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv8n v0.0 head
# YOLOv8.0n head
head:
[[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4

@ -0,0 +1,42 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
# YOLOv8.0s backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 3, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C2f, [128, True]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C2f, [256, True]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 6, C2f, [512, True]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C2f, [1024, True]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv8.0s head
head:
[[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C2f, [512]], # 13
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C2f, [256]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P4
[-1, 3, C2f, [512]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 9], 1, Concat, [1]], # cat head P5
[-1, 3, C2f, [1024]], # 23 (P5/32-large)
[[15, 18, 21], 1, Segment, [nc, 32, 256]], # Detect(P3, P4, P5)
]

@ -0,0 +1,42 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 1.00 # model depth multiple
width_multiple: 1.25 # layer channel multiple
# YOLOv8.0x backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 3, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C2f, [128, True]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C2f, [256, True]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 6, C2f, [512, True]],
[-1, 1, Conv, [512, 3, 2]], # 7-P5/32
[-1, 3, C2f, [512, True]],
[-1, 1, SPPF, [512, 5]], # 9
]
# YOLOv8.0x head
head:
[[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C2f, [512]], # 13
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C2f, [256]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 12], 1, Concat, [1]], # cat head P4
[-1, 3, C2f, [512]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 9], 1, Concat, [1]], # cat head P5
[-1, 3, C2f, [512]], # 23 (P5/32-large)
[[15, 18, 21], 1, Segment, [nc, 32, 256]], # Detect(P3, P4, P5)
]

@ -12,17 +12,14 @@ class SegmentationPredictor(DetectionPredictor):
def postprocess(self, preds, img, orig_img):
masks = []
if len(preds) == 2: # eval
p, proto, = preds
else: # len(3) train
p, proto, _ = preds
# TODO: filter by classes
p = ops.non_max_suppression(p,
p = ops.non_max_suppression(preds[0],
self.args.conf_thres,
self.args.iou_thres,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
nm=32)
proto = preds[1][-1]
for i, pred in enumerate(p):
shape = orig_img[i].shape if self.webcam else orig_img.shape
if not len(pred):

@ -6,9 +6,10 @@ import torch.nn.functional as F
from ultralytics.nn.tasks import SegmentationModel
from ultralytics.yolo import v8
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy
from ultralytics.yolo.utils.loss import BboxLoss
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
from ultralytics.yolo.utils.plotting import plot_images, plot_results
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
from ultralytics.yolo.utils.torch_utils import de_parallel
from ..detect import DetectionTrainer
@ -31,200 +32,144 @@ class SegmentationTrainer(DetectionTrainer):
args=self.args)
def criterion(self, preds, batch):
head = de_parallel(self.model).model[-1]
sort_obj_iou = False
autobalance = False
if not hasattr(self, 'compute_loss'):
self.compute_loss = SegLoss(de_parallel(self.model), overlap=self.args.overlap_mask)
return self.compute_loss(preds, batch)
# init losses
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.args.cls_pw], device=self.device))
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.args.obj_pw], device=self.device))
def plot_training_samples(self, batch, ni):
images = batch["img"]
masks = batch["masks"]
cls = batch["cls"].squeeze(-1)
bboxes = batch["bboxes"]
paths = batch["im_file"]
batch_idx = batch["batch_idx"]
plot_images(images, batch_idx, cls, bboxes, masks, paths=paths, fname=self.save_dir / f"train_batch{ni}.jpg")
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
cp, cn = smooth_BCE(eps=self.args.label_smoothing) # positive, negative BCE targets
def plot_metrics(self):
plot_results(file=self.csv, segment=True) # save results.png
# Focal loss
g = self.args.fl_gamma
if self.args.fl_gamma > 0:
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
balance = {3: [4.0, 1.0, 0.4]}.get(head.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
ssi = list(head.stride).index(16) if autobalance else 0 # stride 16 index
BCEcls, BCEobj, gr, autobalance = BCEcls, BCEobj, 1.0, autobalance
# Criterion class for computing training losses
class SegLoss:
def single_mask_loss(gt_mask, pred, proto, xyxy, area):
# Mask loss for one image
pred_mask = (pred @ proto.view(head.nm, -1)).view(-1, *proto.shape[1:]) # (n,32) @ (32,80,80) -> (n,80,80)
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
def __init__(self, model, overlap=True): # model must be de-paralleled
def build_targets(p, targets):
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
nonlocal head
na, nt = head.na, targets.shape[0] # number of anchors, targets
tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], []
gain = torch.ones(8, device=self.device) # normalized to gridspace gain
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1,
nt) # same as .repeat_interleave(nt)
if self.args.overlap_mask:
batch = p[0].shape[0]
ti = []
for i in range(batch):
num = (targets[:, 0] == i).sum() # find number of targets of each image
ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1) # (na, num)
ti = torch.cat(ti, 1) # (na, nt)
else:
ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1)
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2) # append anchor indices
g = 0.5 # bias
off = torch.tensor(
[
[0, 0],
[1, 0],
[0, 1],
[-1, 0],
[0, -1], # j,k,l,m
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
],
device=self.device).float() * g # offsets
for i in range(head.nl):
anchors, shape = head.anchors[i], p[i].shape
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
# Match targets to anchors
t = targets * gain # shape(3,n,7)
if nt:
# Matches
r = t[..., 4:6] / anchors[:, None] # wh ratio
j = torch.max(r, 1 / r).max(2)[0] < self.args.anchor_t # compare
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
t = t[j] # filter
# Offsets
gxy = t[:, 2:4] # grid xy
gxi = gain[[2, 3]] - gxy # inverse
j, k = ((gxy % 1 < g) & (gxy > 1)).T
l, m = ((gxi % 1 < g) & (gxi > 1)).T
j = torch.stack((torch.ones_like(j), j, k, l, m))
t = t.repeat((5, 1, 1))[j]
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
else:
t = targets[0]
offsets = 0
# Define
bc, gxy, gwh, at = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
(a, tidx), (b, c) = at.long().T, bc.long().T # anchors, image, class
gij = (gxy - offsets).long()
gi, gj = gij.T # grid indices
# Append
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
anch.append(anchors[a]) # anchors
tcls.append(c) # class
tidxs.append(tidx)
xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6]) # xywh normalized
return tcls, tbox, indices, anch, tidxs, xywhn
if len(preds) == 2: # eval
p, proto, = preds
else: # len(3) train
_, proto, p = preds
targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
masks = batch["masks"]
targets, masks = targets.to(self.device), masks.to(self.device).float()
device = next(model.parameters()).device # get model device
h = model.args # hyperparameters
bs, nm, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
lcls = torch.zeros(1, device=self.device)
lbox = torch.zeros(1, device=self.device)
lobj = torch.zeros(1, device=self.device)
lseg = torch.zeros(1, device=self.device)
tcls, tbox, indices, anchors, tidxs, xywhn = build_targets(p, targets)
m = model.model[-1] # Detect() module
self.bce = nn.BCEWithLogitsLoss(reduction='none')
self.hyp = h
self.stride = m.stride # model strides
self.nc = m.nc # number of classes
self.no = m.no
self.nm = m.nm # number of masks
self.reg_max = m.reg_max
self.overlap = overlap
self.device = device
# Losses
for i, pi in enumerate(p): # layer index, layer predictions
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
self.use_dfl = m.reg_max > 1
self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)
n = b.shape[0] # number of targets
def preprocess(self, targets, batch_size, scale_tensor):
if targets.shape[0] == 0:
out = torch.zeros(batch_size, 0, 5, device=self.device)
else:
i = targets[:, 0] # image index
_, counts = i.unique(return_counts=True)
out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
for j in range(batch_size):
matches = i == j
n = matches.sum()
if n:
pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, head.nc, nm), 1) # subset of predictions
# Box regression
pxy = pxy.sigmoid() * 2 - 0.5
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
pbox = torch.cat((pxy, pwh), 1) # predicted box
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
lbox += (1.0 - iou).mean() # iou loss
# Objectness
iou = iou.detach().clamp(0).type(tobj.dtype)
if sort_obj_iou:
j = iou.argsort()
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
if gr < 1:
iou = (1.0 - gr) + gr * iou
tobj[b, a, gj, gi] = iou # iou ratio
# Classification
if head.nc > 1: # cls loss (only if multiple classes)
t = torch.full_like(pcls, cn, device=self.device) # targets
t[range(n), tcls[i]] = cp
lcls += BCEcls(pcls, t) # BCE
# Mask regression
out[j, :n] = targets[matches, 1:]
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
return out
def bbox_decode(self, anchor_points, pred_dist):
if self.use_dfl:
b, a, c = pred_dist.shape # batch, anchors, channels
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
return dist2bbox(pred_dist, anchor_points, xywh=False)
def __call__(self, preds, batch):
loss = torch.zeros(4, device=self.device) # box, cls, dfl
feats, pred_masks, proto = preds if len(preds) == 3 else preds[1]
batch_size, _, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
(self.reg_max * 4, self.nc), 1)
# b, grids, ..
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
pred_masks = pred_masks.permute(0, 2, 1).contiguous()
dtype = pred_scores.dtype
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
# targets
batch_idx = batch["batch_idx"].view(-1, 1)
targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1)
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
masks = batch["masks"].to(self.device).float()
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]
marea = xywhn[i][:, 2:].prod(1) # mask width, height normalized
mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device))
for bi in b.unique():
j = b == bi # matching index
if self.args.overlap_mask:
mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0)
else:
mask_gti = masks[tidxs[i]][j]
lseg += single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j])
else:
lseg += (proto * 0).sum()
obji = BCEobj(pi[..., 4], tobj)
lobj += obji * balance[i] # obj loss
if autobalance:
balance[i] = balance[i] * 0.9999 + 0.0001 / obji.detach().item()
if autobalance:
balance = [x / balance[ssi] for x in balance]
lbox *= self.args.box
lobj *= self.args.obj
lcls *= self.args.cls
lseg *= self.args.box / bs
# pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
loss = lbox + lobj + lcls + lseg
return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach()
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
def label_loss_items(self, loss_items=None, prefix="train"):
# We should just use named tensors here in future
keys = [f"{prefix}/{x}" for x in self.loss_names]
return dict(zip(keys, loss_items)) if loss_items is not None else keys
target_scores_sum = target_scores.sum()
def progress_string(self):
return ('\n' + '%11s' * 8) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
# cls loss
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
def plot_training_samples(self, batch, ni):
images = batch["img"]
masks = batch["masks"]
cls = batch["cls"].squeeze(-1)
bboxes = batch["bboxes"]
paths = batch["im_file"]
batch_idx = batch["batch_idx"]
plot_images(images, batch_idx, cls, bboxes, masks, paths=paths, fname=self.save_dir / f"train_batch{ni}.jpg")
def plot_metrics(self):
plot_results(file=self.csv, segment=True) # save results.png
# bbox loss
if fg_mask.sum():
loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor,
target_scores, target_scores_sum, fg_mask)
for i in range(batch_size):
if fg_mask[i].sum():
mask_idx = target_gt_idx[i][fg_mask[i]] + 1
if self.overlap:
gt_mask = torch.where(masks[[i]] == mask_idx.view(-1, 1, 1), 1.0, 0.0)
else:
gt_mask = masks[batch_idx == i][mask_idx]
xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy,
marea) # seg loss
# WARNING: Uncomment lines below in case of Multi-GPU DDP unused gradient errors
# else:
# loss[1] += proto.sum() * 0
# else:
# loss[1] += proto.sum() * 0
loss[0] *= 7.5 # box gain
loss[1] *= 7.5 / batch_size # seg gain
loss[2] *= 0.5 # cls gain
loss[3] *= 1.5 # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
# Mask loss for one image
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80)
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)

@ -66,7 +66,7 @@ class SegmentationValidator(DetectionValidator):
agnostic=self.args.single_cls,
max_det=self.args.max_det,
nm=self.nm)
return p, preds[1], preds[2]
return p, preds[1][-1]
def update_metrics(self, preds, batch):
# Metrics

Loading…
Cancel
Save