changed data/loaders and engine/predictor so they accept 1 channel images for predictions
This commit is contained in:
@ -249,7 +249,7 @@ class LoadImages:
|
|||||||
else:
|
else:
|
||||||
# Read image
|
# Read image
|
||||||
self.count += 1
|
self.count += 1
|
||||||
im0 = cv2.imread(path) # BGR
|
im0 = cv2.imread(path, cv2.IMREAD_GRAYSCALE) # BGR
|
||||||
if im0 is None:
|
if im0 is None:
|
||||||
raise FileNotFoundError(f'Image Not Found {path}')
|
raise FileNotFoundError(f'Image Not Found {path}')
|
||||||
s = f'image {self.count}/{self.nf} {path}: '
|
s = f'image {self.count}/{self.nf} {path}: '
|
||||||
|
@ -122,7 +122,8 @@ class BasePredictor:
|
|||||||
not_tensor = not isinstance(im, torch.Tensor)
|
not_tensor = not isinstance(im, torch.Tensor)
|
||||||
if not_tensor:
|
if not_tensor:
|
||||||
im = np.stack(self.pre_transform(im))
|
im = np.stack(self.pre_transform(im))
|
||||||
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
|
im = np.expand_dims(im, -1)
|
||||||
|
im = im[..., ::].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
|
||||||
im = np.ascontiguousarray(im) # contiguous
|
im = np.ascontiguousarray(im) # contiguous
|
||||||
im = torch.from_numpy(im)
|
im = torch.from_numpy(im)
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user