Detection support (#60)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
single_channel
Ayush Chaurasia 2 years ago committed by GitHub
parent 5a52e7663a
commit 7ec7cf3aef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -90,15 +90,16 @@ jobs:
- name: Test detection - name: Test detection
shell: bash # for Windows compatibility shell: bash # for Windows compatibility
run: | run: |
echo "TODO" yolo task=detect mode=train model=yolov5n.yaml data=coco128.yaml epochs=1 img_size=64
yolo task=detect mode=val model=runs/exp/weights/last.pt img_size=64
- name: Test segmentation - name: Test segmentation
shell: bash # for Windows compatibility shell: bash # for Windows compatibility
# TODO: redo val test without hardcoded weights # TODO: redo val test without hardcoded weights
run: | run: |
yolo task=segment mode=train model=yolov5n-seg.yaml data=coco128-seg.yaml epochs=1 img_size=64 yolo task=segment mode=train model=yolov5n-seg.yaml data=coco128-seg.yaml epochs=1 img_size=64
yolo task=segment mode=val model=runs/exp/weights/last.pt data=coco128-seg.yaml img_size=64 yolo task=segment mode=val model=runs/exp2/weights/last.pt data=coco128-seg.yaml img_size=64
- name: Test classification - name: Test classification
shell: bash # for Windows compatibility shell: bash # for Windows compatibility
run: | run: |
yolo task=classify mode=train model=resnet18 data=mnist160 epochs=1 img_size=32 yolo task=classify mode=train model=resnet18 data=mnist160 epochs=1 img_size=32
yolo task=classify mode=val model=runs/exp2/weights/last.pt data=mnist160 yolo task=classify mode=val model=runs/exp3/weights/last.pt data=mnist160

@ -459,14 +459,14 @@ def ap_per_class_box_and_mask(
"boxes": { "boxes": {
"p": results_boxes[0], "p": results_boxes[0],
"r": results_boxes[1], "r": results_boxes[1],
"ap": results_boxes[3],
"f1": results_boxes[2], "f1": results_boxes[2],
"ap": results_boxes[3],
"ap_class": results_boxes[4]}, "ap_class": results_boxes[4]},
"masks": { "masks": {
"p": results_masks[0], "p": results_masks[0],
"r": results_masks[1], "r": results_masks[1],
"ap": results_masks[3],
"f1": results_masks[2], "f1": results_masks[2],
"ap": results_masks[3],
"ap_class": results_masks[4]}} "ap_class": results_masks[4]}}
return results return results
@ -547,7 +547,7 @@ class Metric:
Args: Args:
results: tuple(p, r, ap, f1, ap_class) results: tuple(p, r, ap, f1, ap_class)
""" """
p, r, all_ap, f1, ap_class_index = results p, r, f1, all_ap, ap_class_index = results
self.p = p self.p = p
self.r = r self.r = r
self.all_ap = all_ap self.all_ap = all_ap

@ -186,7 +186,15 @@ def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False,
@threaded @threaded
def plot_images_and_masks(images, batch_idx, cls, bboxes, masks, paths, confs=None, fname='images.jpg', names=None): def plot_images_and_masks(images,
batch_idx,
cls,
bboxes,
masks,
confs=None,
paths=None,
fname='images.jpg',
names=None):
# Plot image grid with labels # Plot image grid with labels
if isinstance(images, torch.Tensor): if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy() images = images.cpu().float().numpy()
@ -327,3 +335,99 @@ def output_to_target(output, max_det=300):
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1)) targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
targets = torch.cat(targets, 0).numpy() targets = torch.cat(targets, 0).numpy()
return targets[:, 0], targets[:, 1], targets[:, 2:6], targets[:, 6] return targets[:, 0], targets[:, 1], targets[:, 2:6], targets[:, 6]
@threaded
def plot_images(images, batch_idx, cls, bboxes, confs=None, paths=None, fname='images.jpg', names=None):
# Plot image grid with labels
if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy()
if isinstance(cls, torch.Tensor):
cls = cls.cpu().numpy()
if isinstance(bboxes, torch.Tensor):
bboxes = bboxes.cpu().numpy()
if isinstance(batch_idx, torch.Tensor):
batch_idx = batch_idx.cpu().numpy()
max_size = 1920 # max image size
max_subplots = 16 # max image subplots, i.e. 4x4
bs, _, h, w = images.shape # batch size, _, height, width
bs = min(bs, max_subplots) # limit plot images
ns = np.ceil(bs ** 0.5) # number of subplots (square)
if np.max(images[0]) <= 1:
images *= 255 # de-normalise (optional)
# Build Image
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
for i, im in enumerate(images):
if i == max_subplots: # if last batch has fewer images than we expect
break
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
im = im.transpose(1, 2, 0)
mosaic[y:y + h, x:x + w, :] = im
# Resize (optional)
scale = max_size / ns / max(h, w)
if scale < 1:
h = math.ceil(scale * h)
w = math.ceil(scale * w)
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
# Annotate
fs = int((h + w) * ns * 0.01) # font size
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
for i in range(i + 1):
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
if paths:
annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
if len(cls) > 0:
idx = batch_idx == i
boxes = xywh2xyxy(bboxes[idx]).T
classes = cls[idx].astype('int')
labels = confs is None # labels if no conf column
conf = None if labels else confs[idx] # check for confidence presence (label vs pred)
if boxes.shape[1]:
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
boxes[[0, 2]] *= w # scale to pixels
boxes[[1, 3]] *= h
elif scale < 1: # absolute coords need scale if image scales
boxes *= scale
boxes[[0, 2]] += x
boxes[[1, 3]] += y
for j, box in enumerate(boxes.T.tolist()):
c = classes[j]
color = colors(c)
c = names[c] if names else c
if labels or conf[j] > 0.25: # 0.25 conf thresh
label = f'{c}' if labels else f'{c} {conf[j]:.1f}'
annotator.box_label(box, label, color=color)
annotator.im.save(fname) # save
def plot_results(file='path/to/results.csv', dir=''):
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
save_dir = Path(file).parent if file else Path(dir)
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
ax = ax.ravel()
files = list(save_dir.glob('results*.csv'))
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
for f in files:
try:
data = pd.read_csv(f)
s = [x.strip() for x in data.columns]
x = data.values[:, 0]
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
y = data.values[:, j].astype('float')
# y[y == 0] = np.nan # don't show zero values
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
ax[i].set_title(s[j], fontsize=12)
# if j in [8, 9, 10]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
print(f'Warning: Plotting error for {f}: {e}')
ax[1].legend()
fig.savefig(save_dir / 'results.png', dpi=200)
plt.close()

@ -1,7 +1,7 @@
from pathlib import Path from pathlib import Path
from ultralytics.yolo.v8 import classify, segment from ultralytics.yolo.v8 import classify, detect, segment
ROOT = Path(__file__).parents[0] # yolov8 ROOT ROOT = Path(__file__).parents[0] # yolov8 ROOT
__all__ = ["classify", "segment"] __all__ = ["classify", "segment", "detect"]

@ -0,0 +1,2 @@
from ultralytics.yolo.v8.detect.train import DetectionTrainer, train
from ultralytics.yolo.v8.detect.val import DetectionValidator, val

@ -0,0 +1,209 @@
import hydra
import torch
import torch.nn as nn
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
from ultralytics.yolo.utils.modeling.tasks import DetectionModel
from ultralytics.yolo.utils.plotting import plot_images, plot_results
from ultralytics.yolo.utils.torch_utils import de_parallel
from ..segment import SegmentationTrainer
from .val import DetectionValidator
# BaseTrainer python usage
class DetectionTrainer(SegmentationTrainer):
def load_model(self, model_cfg, weights, data):
model = DetectionModel(model_cfg or weights["model"].yaml,
ch=3,
nc=data["nc"],
anchors=self.args.get("anchors"))
if weights:
model.load(weights)
for _, v in model.named_parameters():
v.requires_grad = True # train all layers
return model
def get_validator(self):
return DetectionValidator(self.test_loader, save_dir=self.save_dir, logger=self.console, args=self.args)
def criterion(self, preds, batch):
head = de_parallel(self.model).model[-1]
sort_obj_iou = False
autobalance = False
# init losses
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.args.cls_pw], device=self.device))
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.args.obj_pw], device=self.device))
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
cp, cn = smooth_BCE(eps=self.args.label_smoothing) # positive, negative BCE targets
# Focal loss
g = self.args.fl_gamma
if self.args.fl_gamma > 0:
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
balance = {3: [4.0, 1.0, 0.4]}.get(head.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
ssi = list(head.stride).index(16) if autobalance else 0 # stride 16 index
BCEcls, BCEobj, gr, autobalance = BCEcls, BCEobj, 1.0, autobalance
def build_targets(p, targets):
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
nonlocal head
na, nt = head.na, targets.shape[0] # number of anchors, targets
tcls, tbox, indices, anch = [], [], [], []
gain = torch.ones(7, device=self.device) # normalized to gridspace gain
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt)
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2) # append anchor indices
g = 0.5 # bias
off = torch.tensor(
[
[0, 0],
[1, 0],
[0, 1],
[-1, 0],
[0, -1], # j,k,l,m
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
],
device=self.device).float() * g # offsets
for i in range(head.nl):
anchors, shape = head.anchors[i], p[i].shape
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
# Match targets to anchors
t = targets * gain # shape(3,n,7)
if nt:
# Matches
r = t[..., 4:6] / anchors[:, None] # wh ratio
j = torch.max(r, 1 / r).max(2)[0] < self.args.anchor_t # compare
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
t = t[j] # filter
# Offsets
gxy = t[:, 2:4] # grid xy
gxi = gain[[2, 3]] - gxy # inverse
j, k = ((gxy % 1 < g) & (gxy > 1)).T
l, m = ((gxi % 1 < g) & (gxi > 1)).T
j = torch.stack((torch.ones_like(j), j, k, l, m))
t = t.repeat((5, 1, 1))[j]
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
else:
t = targets[0]
offsets = 0
# Define
bc, gxy, gwh, a = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class
gij = (gxy - offsets).long()
gi, gj = gij.T # grid indices
# Append
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
anch.append(anchors[a]) # anchors
tcls.append(c) # class
return tcls, tbox, indices, anch
if len(preds) == 2: # eval
_, p = preds
else: # len(3) train
p = preds
targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
targets = targets.to(self.device)
lcls = torch.zeros(1, device=self.device)
lbox = torch.zeros(1, device=self.device)
lobj = torch.zeros(1, device=self.device)
tcls, tbox, indices, anchors = build_targets(p, targets)
# Losses
for i, pi in enumerate(p): # layer index, layer predictions
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
bs = tobj.shape[0]
n = b.shape[0] # number of targets
if n:
pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, head.nc), 1) # subset of predictions
# Box regression
pxy = pxy.sigmoid() * 2 - 0.5
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
pbox = torch.cat((pxy, pwh), 1) # predicted box
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
lbox += (1.0 - iou).mean() # iou loss
# Objectness
iou = iou.detach().clamp(0).type(tobj.dtype)
if sort_obj_iou:
j = iou.argsort()
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
if gr < 1:
iou = (1.0 - gr) + gr * iou
tobj[b, a, gj, gi] = iou # iou ratio
# Classification
if head.nc > 1: # cls loss (only if multiple classes)
t = torch.full_like(pcls, cn, device=self.device) # targets
t[range(n), tcls[i]] = cp
lcls += BCEcls(pcls, t) # BCE
obji = BCEobj(pi[..., 4], tobj)
lobj += obji * balance[i] # obj loss
if autobalance:
balance[i] = balance[i] * 0.9999 + 0.0001 / obji.detach().item()
if autobalance:
balance = [x / balance[ssi] for x in balance]
lbox *= self.args.box
lobj *= self.args.obj
lcls *= self.args.cls
loss = lbox + lobj + lcls
return loss * bs, torch.cat((lbox, lobj, lcls)).detach()
# TODO: improve from API users perspective
def label_loss_items(self, loss_items=None, prefix="train"):
# We should just use named tensors here in future
keys = [f"{prefix}/lbox", f"{prefix}/lobj", f"{prefix}/lcls"]
return dict(zip(keys, loss_items)) if loss_items is not None else keys
def progress_string(self):
return ('\n' + '%11s' * 6) % \
('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Size')
def plot_training_samples(self, batch, ni):
images = batch["img"]
cls = batch["cls"].squeeze(-1)
bboxes = batch["bboxes"]
paths = batch["im_file"]
batch_idx = batch["batch_idx"]
plot_images(images, batch_idx, cls, bboxes, paths=paths, fname=self.save_dir / f"train_batch{ni}.jpg")
def plot_metrics(self):
plot_results(file=self.csv) # save results.png
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def train(cfg):
cfg.model = cfg.model or "models/yolov5n.yaml"
cfg.data = cfg.data or "coco128.yaml" # or yolo.ClassificationDataset("mnist")
trainer = DetectionTrainer(cfg)
trainer.train()
if __name__ == "__main__":
"""
CLI usage:
python ultralytics/yolo/v8/segment/train.py cfg=yolov5n-seg.yaml data=coco128-segments epochs=100 img_size=640
TODO:
Direct cli support, i.e, yolov8 classify_train args.epochs 10
"""
train()

@ -0,0 +1,218 @@
import os
import hydra
import numpy as np
import torch
import torch.nn.functional as F
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.checks import check_file, check_requirements
from ultralytics.yolo.utils.files import yaml_load
from ultralytics.yolo.utils.metrics import ConfusionMatrix, Metric, ap_per_class, box_iou, fitness_detection
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
from ultralytics.yolo.utils.torch_utils import de_parallel
class DetectionValidator(BaseValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
super().__init__(dataloader, save_dir, pbar, logger, args)
if self.args.save_json:
check_requirements(['pycocotools'])
self.process = ops.process_mask_upsample # more accurate
else:
self.process = ops.process_mask # faster
self.data_dict = yaml_load(check_file(self.args.data)) if self.args.data else None
self.is_coco = False
self.class_map = None
self.targets = None
def preprocess(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True)
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255
self.nb, _, self.height, self.width = batch["img"].shape # batch size, channels, height, width
self.targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
self.targets = self.targets.to(self.device)
height, width = batch["img"].shape[2:]
self.targets[:, 2:] *= torch.tensor((width, height, width, height), device=self.device) # to pixels
self.lb = [self.targets[self.targets[:, 0] == i, 1:]
for i in range(self.nb)] if self.args.save_hybrid else [] # for autolabelling
return batch
def init_metrics(self, model):
if self.training:
head = de_parallel(model).model[-1]
else:
head = de_parallel(model).model.model[-1]
if self.data:
self.is_coco = isinstance(self.data.get('val'),
str) and self.data['val'].endswith(f'coco{os.sep}val2017.txt')
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
self.nc = head.nc
self.names = model.names
if isinstance(self.names, (list, tuple)): # old format
self.names = dict(enumerate(self.names))
self.iouv = torch.linspace(0.5, 0.95, 10, device=self.device) # iou vector for mAP@0.5:0.95
self.niou = self.iouv.numel()
self.seen = 0
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
self.metrics = Metric()
self.loss = torch.zeros(4, device=self.device)
self.jdict = []
self.stats = []
def get_desc(self):
return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)")
def postprocess(self, preds):
preds = ops.non_max_suppression(preds,
self.args.conf_thres,
self.args.iou_thres,
labels=self.lb,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det)
return preds
def update_metrics(self, preds, batch):
# Metrics
for si, (pred) in enumerate(preds):
labels = self.targets[self.targets[:, 0] == si, 1:]
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
shape = batch["ori_shape"][si]
# path = batch["shape"][si][0]
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
self.seen += 1
if npr == 0:
if nl:
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), labels[:, 0]))
if self.args.plots:
self.confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
continue
# Predictions
if self.args.single_cls:
pred[:, 5] = 0
predn = pred.clone()
ops.scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape) # native-space pred
# Evaluate
if nl:
tbox = ops.xywh2xyxy(labels[:, 1:5]) # target boxes
ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
correct_bboxes = self._process_batch(predn, labelsn, self.iouv)
# TODO: maybe remove these `self.` arguments as they already are member variable
if self.args.plots:
self.confusion_matrix.process_batch(predn, labelsn)
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # (conf, pcls, tcls)
# TODO: Save/log
'''
if self.args.save_txt:
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
if self.args.save_json:
pred_masks = scale_image(im[si].shape[1:],
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1])
save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
'''
def get_stats(self):
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
if len(stats) and stats[0].any():
results = ap_per_class(*stats, plot=self.args.plots, save_dir=self.save_dir, names=self.names)
self.metrics.update(results[2:])
self.nt_per_class = np.bincount(stats[3].astype(int), minlength=self.nc) # number of targets per class
metrics = {"fitness": fitness_detection(np.array(self.metrics.mean_results()).reshape(1, -1))}
metrics |= zip(self.metric_keys, self.metrics.mean_results())
return metrics
def print_results(self):
pf = '%22s' + '%11i' * 2 + '%11.3g' * 4 # print format
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
if self.nt_per_class.sum() == 0:
self.logger.warning(
f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels')
# Print results per class
if (self.args.verbose or (self.nc < 50 and not self.training)) and self.nc > 1 and len(self.stats):
for i, c in enumerate(self.metrics.ap_class_index):
self.logger.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))
if self.args.plots:
self.confusion_matrix.plot(save_dir=self.save_dir, names=list(self.names.values()))
def _process_batch(self, detections, labels, iouv):
"""
Return correct prediction matrix
Arguments:
detections (array[N, 6]), x1, y1, x2, y2, conf, class
labels (array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (array[N, 10]), for 10 IoU levels
"""
iou = box_iou(labels[:, 1:], detections[:, :4])
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(iouv)):
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
def get_dataloader(self, dataset_path, batch_size):
# TODO: manage splits differently
# calculate stride - check if model is initialized
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0]
# TODO: align with train loss metrics
@property
def metric_keys(self):
return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP_0.5(B)", "metrics/mAP_0.5:0.95(B)"]
def plot_val_samples(self, batch, ni):
images = batch["img"]
cls = batch["cls"].squeeze(-1)
bboxes = batch["bboxes"]
paths = batch["im_file"]
batch_idx = batch["batch_idx"]
plot_images(images,
batch_idx,
cls,
bboxes,
paths=paths,
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
names=self.names)
def plot_predictions(self, batch, preds, ni):
images = batch["img"]
paths = batch["im_file"]
plot_images(images, *output_to_target(preds, max_det=15), paths, self.save_dir / f'val_batch{ni}_pred.jpg',
self.names) # pred
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def val(cfg):
cfg.data = cfg.data or "coco128.yaml"
validator = DetectionValidator(args=cfg)
validator(model=cfg.model)
if __name__ == "__main__":
val()

@ -250,7 +250,7 @@ class SegmentationTrainer(BaseTrainer):
cls, cls,
bboxes, bboxes,
masks, masks,
paths, paths=paths,
fname=self.save_dir / f"train_batch{ni}.jpg") fname=self.save_dir / f"train_batch{ni}.jpg")
def plot_metrics(self): def plot_metrics(self):

@ -252,7 +252,7 @@ class SegmentationValidator(BaseValidator):
if len(self.plot_masks): if len(self.plot_masks):
plot_masks = torch.cat(self.plot_masks, dim=0) plot_masks = torch.cat(self.plot_masks, dim=0)
batch_idx, cls, bboxes, conf = output_to_target(preds[0], max_det=15) batch_idx, cls, bboxes, conf = output_to_target(preds[0], max_det=15)
plot_images_and_masks(images, batch_idx, cls, bboxes, plot_masks, paths, conf, plot_images_and_masks(images, batch_idx, cls, bboxes, plot_masks, conf, paths,
self.save_dir / f'val_batch{ni}_pred.jpg', self.names) # pred self.save_dir / f'val_batch{ni}_pred.jpg', self.names) # pred
self.plot_masks.clear() self.plot_masks.clear()

Loading…
Cancel
Save