Model builder (#29)
Co-authored-by: Ayush Chaurasia <ayush.chuararsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>single_channel
parent
c5cb76b356
commit
7b560f7861
@ -0,0 +1,49 @@
|
|||||||
|
# Ultralytics, GPL-3.0 license
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.50 # layer channel multiple
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 6, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 3, C3, [1024]],
|
||||||
|
[-1, 1, SPPF, [1024, 5]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 v6.0 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
||||||
|
|
@ -0,0 +1,34 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
from ultralytics.yolo.utils.checks import check_yaml
|
||||||
|
from ultralytics.yolo.utils.modeling.tasks import DetectionModel
|
||||||
|
|
||||||
|
|
||||||
|
def test_model_parser():
|
||||||
|
cfg = check_yaml("../assets/dummy_model.yaml") # check YAML
|
||||||
|
|
||||||
|
# Create model
|
||||||
|
model = DetectionModel(cfg)
|
||||||
|
print(model)
|
||||||
|
'''
|
||||||
|
# Options
|
||||||
|
if opt.line_profile: # profile layer by layer
|
||||||
|
model(im, profile=True)
|
||||||
|
|
||||||
|
elif opt.profile: # profile forward-backward
|
||||||
|
results = profile(input=im, ops=[model], n=3)
|
||||||
|
|
||||||
|
elif opt.test: # test all models
|
||||||
|
for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
|
||||||
|
try:
|
||||||
|
_ = Model(cfg)
|
||||||
|
except Exception as e:
|
||||||
|
print(f'Error in {cfg}: {e}')
|
||||||
|
|
||||||
|
else: # report fused model summary
|
||||||
|
model.fuse()
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_model_parser()
|
@ -1,3 +1,4 @@
|
|||||||
|
from .base import BaseDataset
|
||||||
from .build import build_classification_dataloader, build_dataloader
|
from .build import build_classification_dataloader, build_dataloader
|
||||||
from .dataset import ClassificationDataset, SemanticDataset, YOLODataset
|
from .dataset import ClassificationDataset, SemanticDataset, YOLODataset
|
||||||
from .dataset_wrappers import MixAndRectDataset
|
from .dataset_wrappers import MixAndRectDataset
|
||||||
|
@ -1,18 +1,40 @@
|
|||||||
from .general import Profile, WorkingDirectory, check_version, download, increment_path, save_yaml
|
import contextlib
|
||||||
from .torch_utils import LOCAL_RANK, RANK, WORLD_SIZE, DDP_model, select_device, torch_distributed_zero_first
|
import logging
|
||||||
|
import os
|
||||||
__all__ = [
|
import platform
|
||||||
# general
|
from pathlib import Path
|
||||||
"increment_path",
|
|
||||||
"save_yaml",
|
from .files import user_config_dir
|
||||||
"WorkingDirectory",
|
from .loggers import emojis, set_logging
|
||||||
"download",
|
|
||||||
"check_version",
|
# Constants
|
||||||
"Profile",
|
|
||||||
# torch
|
FILE = Path(__file__).resolve()
|
||||||
"torch_distributed_zero_first",
|
ROOT = FILE.parents[2] # YOLOv5 root directory
|
||||||
"LOCAL_RANK",
|
RANK = int(os.getenv('RANK', -1))
|
||||||
"RANK",
|
DATASETS_DIR = ROOT.parent / 'datasets' # YOLOv5 datasets directory
|
||||||
"WORLD_SIZE",
|
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
|
||||||
"DDP_model",
|
AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
|
||||||
"select_device"]
|
FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf
|
||||||
|
|
||||||
|
CONFIG_DIR = user_config_dir() # Ultralytics settings dir
|
||||||
|
|
||||||
|
set_logging() # run before defining LOGGER
|
||||||
|
LOGGER = logging.getLogger("yolov5") # define globally
|
||||||
|
if platform.system() == "Windows":
|
||||||
|
for fn in LOGGER.info, LOGGER.warning:
|
||||||
|
setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging
|
||||||
|
|
||||||
|
|
||||||
|
class TryExcept(contextlib.ContextDecorator):
|
||||||
|
# YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
|
||||||
|
def __init__(self, msg=''):
|
||||||
|
self.msg = msg
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, value, traceback):
|
||||||
|
if value:
|
||||||
|
print(emojis(f'{self.msg}{value}'))
|
||||||
|
return True
|
||||||
|
@ -0,0 +1,171 @@
|
|||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
AutoAnchor utils
|
||||||
|
"""
|
||||||
|
|
||||||
|
import random
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from ultralytics.yolo.data import BaseDataset
|
||||||
|
from ultralytics.yolo.utils import LOGGER, TryExcept
|
||||||
|
|
||||||
|
from .loggers import colorstr
|
||||||
|
|
||||||
|
PREFIX = colorstr('AutoAnchor: ')
|
||||||
|
|
||||||
|
|
||||||
|
def check_anchor_order(m):
|
||||||
|
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
||||||
|
a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer
|
||||||
|
da = a[-1] - a[0] # delta a
|
||||||
|
ds = m.stride[-1] - m.stride[0] # delta s
|
||||||
|
if da and (da.sign() != ds.sign()): # same order
|
||||||
|
LOGGER.info(f'{PREFIX}Reversing anchor order')
|
||||||
|
m.anchors[:] = m.anchors.flip(0)
|
||||||
|
|
||||||
|
|
||||||
|
@TryExcept(f'{PREFIX}ERROR: ')
|
||||||
|
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
||||||
|
# Check anchor fit to data, recompute if necessary
|
||||||
|
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
||||||
|
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||||
|
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
||||||
|
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
||||||
|
|
||||||
|
def metric(k): # compute metric
|
||||||
|
r = wh[:, None] / k[None]
|
||||||
|
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
||||||
|
best = x.max(1)[0] # best_x
|
||||||
|
aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
|
||||||
|
bpr = (best > 1 / thr).float().mean() # best possible recall
|
||||||
|
return bpr, aat
|
||||||
|
|
||||||
|
stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides
|
||||||
|
anchors = m.anchors.clone() * stride # current anchors
|
||||||
|
bpr, aat = metric(anchors.cpu().view(-1, 2))
|
||||||
|
s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
|
||||||
|
if bpr > 0.98: # threshold to recompute
|
||||||
|
LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅')
|
||||||
|
else:
|
||||||
|
LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...')
|
||||||
|
na = m.anchors.numel() // 2 # number of anchors
|
||||||
|
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
||||||
|
new_bpr = metric(anchors)[0]
|
||||||
|
if new_bpr > bpr: # replace anchors
|
||||||
|
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
|
||||||
|
m.anchors[:] = anchors.clone().view_as(m.anchors)
|
||||||
|
check_anchor_order(m) # must be in pixel-space (not grid-space)
|
||||||
|
m.anchors /= stride
|
||||||
|
s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
|
||||||
|
else:
|
||||||
|
s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
|
||||||
|
LOGGER.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
||||||
|
""" Creates kmeans-evolved anchors from training dataset
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
dataset: path to data.yaml, or a loaded dataset
|
||||||
|
n: number of anchors
|
||||||
|
img_size: image size used for training
|
||||||
|
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
||||||
|
gen: generations to evolve anchors using genetic algorithm
|
||||||
|
verbose: print all results
|
||||||
|
|
||||||
|
Return:
|
||||||
|
k: kmeans evolved anchors
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
from utils.autoanchor import *; _ = kmean_anchors()
|
||||||
|
"""
|
||||||
|
from scipy.cluster.vq import kmeans
|
||||||
|
|
||||||
|
npr = np.random
|
||||||
|
thr = 1 / thr
|
||||||
|
|
||||||
|
def metric(k, wh): # compute metrics
|
||||||
|
r = wh[:, None] / k[None]
|
||||||
|
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
||||||
|
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
||||||
|
return x, x.max(1)[0] # x, best_x
|
||||||
|
|
||||||
|
def anchor_fitness(k): # mutation fitness
|
||||||
|
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
||||||
|
return (best * (best > thr).float()).mean() # fitness
|
||||||
|
|
||||||
|
def print_results(k, verbose=True):
|
||||||
|
k = k[np.argsort(k.prod(1))] # sort small to large
|
||||||
|
x, best = metric(k, wh0)
|
||||||
|
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
||||||
|
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
|
||||||
|
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
|
||||||
|
f'past_thr={x[x > thr].mean():.3f}-mean: '
|
||||||
|
for x in k:
|
||||||
|
s += '%i,%i, ' % (round(x[0]), round(x[1]))
|
||||||
|
if verbose:
|
||||||
|
LOGGER.info(s[:-2])
|
||||||
|
return k
|
||||||
|
|
||||||
|
if isinstance(dataset, str): # *.yaml file
|
||||||
|
with open(dataset, errors='ignore') as f:
|
||||||
|
data_dict = yaml.safe_load(f) # model dict
|
||||||
|
|
||||||
|
dataset = BaseDataset(data_dict['train'], augment=True, rect=True)
|
||||||
|
|
||||||
|
# Get label wh
|
||||||
|
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||||
|
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
||||||
|
|
||||||
|
# Filter
|
||||||
|
i = (wh0 < 3.0).any(1).sum()
|
||||||
|
if i:
|
||||||
|
LOGGER.info(f'{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size')
|
||||||
|
wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32) # filter > 2 pixels
|
||||||
|
# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
||||||
|
|
||||||
|
# Kmeans init
|
||||||
|
try:
|
||||||
|
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
|
||||||
|
assert n <= len(wh) # apply overdetermined constraint
|
||||||
|
s = wh.std(0) # sigmas for whitening
|
||||||
|
k = kmeans(wh / s, n, iter=30)[0] * s # points
|
||||||
|
assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar
|
||||||
|
except Exception:
|
||||||
|
LOGGER.warning(f'{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init')
|
||||||
|
k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
|
||||||
|
wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
|
||||||
|
k = print_results(k, verbose=False)
|
||||||
|
|
||||||
|
# Plot
|
||||||
|
# k, d = [None] * 20, [None] * 20
|
||||||
|
# for i in tqdm(range(1, 21)):
|
||||||
|
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
||||||
|
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
||||||
|
# ax = ax.ravel()
|
||||||
|
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
||||||
|
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
||||||
|
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
||||||
|
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
||||||
|
# fig.savefig('wh.png', dpi=200)
|
||||||
|
|
||||||
|
# Evolve
|
||||||
|
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
||||||
|
pbar = tqdm(range(gen), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
||||||
|
for _ in pbar:
|
||||||
|
v = np.ones(sh)
|
||||||
|
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
||||||
|
v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
||||||
|
kg = (k.copy() * v).clip(min=2.0)
|
||||||
|
fg = anchor_fitness(kg)
|
||||||
|
if fg > f:
|
||||||
|
f, k = fg, kg.copy()
|
||||||
|
pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
|
||||||
|
if verbose:
|
||||||
|
print_results(k, verbose)
|
||||||
|
|
||||||
|
return print_results(k).astype(np.float32)
|
@ -0,0 +1,136 @@
|
|||||||
|
import glob
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
import sys
|
||||||
|
import urllib
|
||||||
|
from pathlib import Path
|
||||||
|
from subprocess import check_output
|
||||||
|
|
||||||
|
import pkg_resources as pkg
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from ultralytics.yolo.utils import AUTOINSTALL, CONFIG_DIR, FONT, LOGGER, ROOT, TryExcept
|
||||||
|
|
||||||
|
from .loggers import colorstr, emojis
|
||||||
|
|
||||||
|
|
||||||
|
def check_version(current="0.0.0", minimum="0.0.0", name="version ", pinned=False, hard=False, verbose=False):
|
||||||
|
# Check version vs. required version
|
||||||
|
current, minimum = (pkg.parse_version(x) for x in (current, minimum))
|
||||||
|
result = (current == minimum) if pinned else (current >= minimum) # bool
|
||||||
|
s = f"WARNING ⚠️ {name}{minimum} is required by YOLOv5, but {name}{current} is currently installed" # string
|
||||||
|
if hard:
|
||||||
|
assert result, emojis(s) # assert min requirements met
|
||||||
|
if verbose and not result:
|
||||||
|
LOGGER.warning(s)
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def check_font(font=FONT, progress=False):
|
||||||
|
# Download font to CONFIG_DIR if necessary
|
||||||
|
font = Path(font)
|
||||||
|
file = CONFIG_DIR / font.name
|
||||||
|
if not font.exists() and not file.exists():
|
||||||
|
url = f'https://ultralytics.com/assets/{font.name}'
|
||||||
|
LOGGER.info(f'Downloading {url} to {file}...')
|
||||||
|
torch.hub.download_url_to_file(url, str(file), progress=progress)
|
||||||
|
|
||||||
|
|
||||||
|
def check_online():
|
||||||
|
# Check internet connectivity
|
||||||
|
import socket
|
||||||
|
try:
|
||||||
|
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
|
||||||
|
return True
|
||||||
|
except OSError:
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def check_python(minimum='3.7.0'):
|
||||||
|
# Check current python version vs. required python version
|
||||||
|
check_version(platform.python_version(), minimum, name='Python ', hard=True)
|
||||||
|
|
||||||
|
|
||||||
|
@TryExcept()
|
||||||
|
def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=''):
|
||||||
|
# Check installed dependencies meet YOLOv5 requirements (pass *.txt file or list of packages or single package str)
|
||||||
|
prefix = colorstr('red', 'bold', 'requirements:')
|
||||||
|
check_python() # check python version
|
||||||
|
if isinstance(requirements, Path): # requirements.txt file
|
||||||
|
file = requirements.resolve()
|
||||||
|
assert file.exists(), f"{prefix} {file} not found, check failed."
|
||||||
|
with file.open() as f:
|
||||||
|
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
|
||||||
|
elif isinstance(requirements, str):
|
||||||
|
requirements = [requirements]
|
||||||
|
|
||||||
|
s = ''
|
||||||
|
n = 0
|
||||||
|
for r in requirements:
|
||||||
|
try:
|
||||||
|
pkg.require(r)
|
||||||
|
except (pkg.VersionConflict, pkg.DistributionNotFound): # exception if requirements not met
|
||||||
|
s += f'"{r}" '
|
||||||
|
n += 1
|
||||||
|
|
||||||
|
if s and install and AUTOINSTALL: # check environment variable
|
||||||
|
LOGGER.info(f"{prefix} YOLOv5 requirement{'s' * (n > 1)} {s}not found, attempting AutoUpdate...")
|
||||||
|
try:
|
||||||
|
assert check_online(), "AutoUpdate skipped (offline)"
|
||||||
|
LOGGER.info(check_output(f'pip install {s} {cmds}', shell=True).decode())
|
||||||
|
source = file if 'file' in locals() else requirements
|
||||||
|
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
|
||||||
|
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
|
||||||
|
LOGGER.info(s)
|
||||||
|
except Exception as e:
|
||||||
|
LOGGER.warning(f'{prefix} ❌ {e}')
|
||||||
|
|
||||||
|
|
||||||
|
def is_ascii(s=''):
|
||||||
|
# Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
|
||||||
|
s = str(s) # convert list, tuple, None, etc. to str
|
||||||
|
return len(s.encode().decode('ascii', 'ignore')) == len(s)
|
||||||
|
|
||||||
|
|
||||||
|
def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''):
|
||||||
|
# Check file(s) for acceptable suffix
|
||||||
|
if file and suffix:
|
||||||
|
if isinstance(suffix, str):
|
||||||
|
suffix = [suffix]
|
||||||
|
for f in file if isinstance(file, (list, tuple)) else [file]:
|
||||||
|
s = Path(f).suffix.lower() # file suffix
|
||||||
|
if len(s):
|
||||||
|
assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
|
||||||
|
|
||||||
|
|
||||||
|
def check_file(file, suffix=''):
|
||||||
|
# Search/download file (if necessary) and return path
|
||||||
|
check_suffix(file, suffix) # optional
|
||||||
|
file = str(file) # convert to str()
|
||||||
|
if Path(file).is_file() or not file: # exists
|
||||||
|
return file
|
||||||
|
elif file.startswith(('http:/', 'https:/')): # download
|
||||||
|
url = file # warning: Pathlib turns :// -> :/
|
||||||
|
file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth
|
||||||
|
if Path(file).is_file():
|
||||||
|
LOGGER.info(f'Found {url} locally at {file}') # file already exists
|
||||||
|
else:
|
||||||
|
LOGGER.info(f'Downloading {url} to {file}...')
|
||||||
|
torch.hub.download_url_to_file(url, file)
|
||||||
|
assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check
|
||||||
|
return file
|
||||||
|
elif file.startswith('clearml://'): # ClearML Dataset ID
|
||||||
|
assert 'clearml' in sys.modules, "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'."
|
||||||
|
return file
|
||||||
|
else: # search
|
||||||
|
files = []
|
||||||
|
for d in 'data', 'models', 'utils': # search directories
|
||||||
|
files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file
|
||||||
|
assert len(files), f'File not found: {file}' # assert file was found
|
||||||
|
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
|
||||||
|
return files[0] # return file
|
||||||
|
|
||||||
|
|
||||||
|
def check_yaml(file, suffix=('.yaml', '.yml')):
|
||||||
|
# Search/download YAML file (if necessary) and return path, checking suffix
|
||||||
|
return check_file(file, suffix)
|
@ -0,0 +1,147 @@
|
|||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
import urllib
|
||||||
|
from itertools import repeat
|
||||||
|
from multiprocessing.pool import ThreadPool
|
||||||
|
from pathlib import Path
|
||||||
|
from zipfile import ZipFile
|
||||||
|
|
||||||
|
import requests
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from ultralytics.yolo.utils import LOGGER
|
||||||
|
|
||||||
|
|
||||||
|
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
|
||||||
|
# Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
|
||||||
|
file = Path(file)
|
||||||
|
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
|
||||||
|
try: # url1
|
||||||
|
LOGGER.info(f'Downloading {url} to {file}...')
|
||||||
|
torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
|
||||||
|
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
|
||||||
|
except Exception as e: # url2
|
||||||
|
if file.exists():
|
||||||
|
file.unlink() # remove partial downloads
|
||||||
|
LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
|
||||||
|
os.system(f"curl -# -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
|
||||||
|
finally:
|
||||||
|
if not file.exists() or file.stat().st_size < min_bytes: # check
|
||||||
|
if file.exists():
|
||||||
|
file.unlink() # remove partial downloads
|
||||||
|
LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
|
||||||
|
LOGGER.info('')
|
||||||
|
|
||||||
|
|
||||||
|
def is_url(url, check=True):
|
||||||
|
# Check if string is URL and check if URL exists
|
||||||
|
try:
|
||||||
|
url = str(url)
|
||||||
|
result = urllib.parse.urlparse(url)
|
||||||
|
assert all([result.scheme, result.netloc]) # check if is url
|
||||||
|
return (urllib.request.urlopen(url).getcode() == 200) if check else True # check if exists online
|
||||||
|
except (AssertionError, urllib.request.HTTPError):
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def attempt_download(file, repo='ultralytics/yolov5', release='v6.2'):
|
||||||
|
# Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v6.2', etc.
|
||||||
|
|
||||||
|
def github_assets(repository, version='latest'):
|
||||||
|
# Return GitHub repo tag and assets (i.e. ['yolov5s.pt', 'yolov5m.pt', ...])
|
||||||
|
if version != 'latest':
|
||||||
|
version = f'tags/{version}' # i.e. tags/v6.2
|
||||||
|
response = requests.get(f'https://api.github.com/repos/{repository}/releases/{version}').json() # github api
|
||||||
|
return response['tag_name'], [x['name'] for x in response['assets']] # tag, assets
|
||||||
|
|
||||||
|
file = Path(str(file).strip().replace("'", ''))
|
||||||
|
if not file.exists():
|
||||||
|
# URL specified
|
||||||
|
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
|
||||||
|
if str(file).startswith(('http:/', 'https:/')): # download
|
||||||
|
url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
|
||||||
|
file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
|
||||||
|
if Path(file).is_file():
|
||||||
|
LOGGER.info(f'Found {url} locally at {file}') # file already exists
|
||||||
|
else:
|
||||||
|
safe_download(file=file, url=url, min_bytes=1E5)
|
||||||
|
return file
|
||||||
|
|
||||||
|
# GitHub assets
|
||||||
|
assets = [f'yolov5{size}{suffix}.pt' for size in 'nsmlx' for suffix in ('', '6', '-cls', '-seg')] # default
|
||||||
|
try:
|
||||||
|
tag, assets = github_assets(repo, release)
|
||||||
|
except Exception:
|
||||||
|
try:
|
||||||
|
tag, assets = github_assets(repo) # latest release
|
||||||
|
except Exception:
|
||||||
|
try:
|
||||||
|
tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
|
||||||
|
except Exception:
|
||||||
|
tag = release
|
||||||
|
|
||||||
|
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
|
||||||
|
if name in assets:
|
||||||
|
url3 = 'https://drive.google.com/drive/folders/1EFQTEUeXWSFww0luse2jB9M1QNZQGwNl' # backup gdrive mirror
|
||||||
|
safe_download(
|
||||||
|
file,
|
||||||
|
url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
|
||||||
|
min_bytes=1E5,
|
||||||
|
error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/{tag} or {url3}')
|
||||||
|
|
||||||
|
return str(file)
|
||||||
|
|
||||||
|
|
||||||
|
def download(url, dir=Path.cwd(), unzip=True, delete=True, curl=False, threads=1, retry=3):
|
||||||
|
# Multithreaded file download and unzip function, used in data.yaml for autodownload
|
||||||
|
def download_one(url, dir):
|
||||||
|
# Download 1 file
|
||||||
|
success = True
|
||||||
|
if Path(url).is_file():
|
||||||
|
f = Path(url) # filename
|
||||||
|
else: # does not exist
|
||||||
|
f = dir / Path(url).name
|
||||||
|
LOGGER.info(f'Downloading {url} to {f}...')
|
||||||
|
for i in range(retry + 1):
|
||||||
|
if curl:
|
||||||
|
s = 'sS' if threads > 1 else '' # silent
|
||||||
|
r = os.system(
|
||||||
|
f'curl -# -{s}L "{url}" -o "{f}" --retry 9 -C -') # curl download with retry, continue
|
||||||
|
success = r == 0
|
||||||
|
else:
|
||||||
|
torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download
|
||||||
|
success = f.is_file()
|
||||||
|
if success:
|
||||||
|
break
|
||||||
|
elif i < retry:
|
||||||
|
LOGGER.warning(f'⚠️ Download failure, retrying {i + 1}/{retry} {url}...')
|
||||||
|
else:
|
||||||
|
LOGGER.warning(f'❌ Failed to download {url}...')
|
||||||
|
|
||||||
|
if unzip and success and f.suffix in ('.zip', '.tar', '.gz'):
|
||||||
|
LOGGER.info(f'Unzipping {f}...')
|
||||||
|
if f.suffix == '.zip':
|
||||||
|
ZipFile(f).extractall(path=dir) # unzip
|
||||||
|
elif f.suffix == '.tar':
|
||||||
|
os.system(f'tar xf {f} --directory {f.parent}') # unzip
|
||||||
|
elif f.suffix == '.gz':
|
||||||
|
os.system(f'tar xfz {f} --directory {f.parent}') # unzip
|
||||||
|
if delete:
|
||||||
|
f.unlink() # remove zip
|
||||||
|
|
||||||
|
dir = Path(dir)
|
||||||
|
dir.mkdir(parents=True, exist_ok=True) # make directory
|
||||||
|
if threads > 1:
|
||||||
|
pool = ThreadPool(threads)
|
||||||
|
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multithreaded
|
||||||
|
pool.close()
|
||||||
|
pool.join()
|
||||||
|
else:
|
||||||
|
for u in [url] if isinstance(url, (str, Path)) else url:
|
||||||
|
download_one(u, dir)
|
||||||
|
|
||||||
|
|
||||||
|
def get_model(model: str):
|
||||||
|
# check for local weights
|
||||||
|
pass
|
@ -0,0 +1,74 @@
|
|||||||
|
import contextlib
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
|
||||||
|
class WorkingDirectory(contextlib.ContextDecorator):
|
||||||
|
# Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
|
||||||
|
def __init__(self, new_dir):
|
||||||
|
self.dir = new_dir # new dir
|
||||||
|
self.cwd = Path.cwd().resolve() # current dir
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
os.chdir(self.dir)
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||||
|
os.chdir(self.cwd)
|
||||||
|
|
||||||
|
|
||||||
|
def is_writeable(dir, test=False):
|
||||||
|
# Return True if directory has write permissions, test opening a file with write permissions if test=True
|
||||||
|
if not test:
|
||||||
|
return os.access(dir, os.W_OK) # possible issues on Windows
|
||||||
|
file = Path(dir) / 'tmp.txt'
|
||||||
|
try:
|
||||||
|
with open(file, 'w'): # open file with write permissions
|
||||||
|
pass
|
||||||
|
file.unlink() # remove file
|
||||||
|
return True
|
||||||
|
except OSError:
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
|
||||||
|
# Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
|
||||||
|
env = os.getenv(env_var)
|
||||||
|
if env:
|
||||||
|
path = Path(env) # use environment variable
|
||||||
|
else:
|
||||||
|
cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs
|
||||||
|
path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir
|
||||||
|
path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable
|
||||||
|
path.mkdir(exist_ok=True) # make if required
|
||||||
|
return path
|
||||||
|
|
||||||
|
|
||||||
|
def increment_path(path, exist_ok=False, sep='', mkdir=False):
|
||||||
|
"""
|
||||||
|
Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
|
||||||
|
# TODO: docs
|
||||||
|
"""
|
||||||
|
path = Path(path) # os-agnostic
|
||||||
|
if path.exists() and not exist_ok:
|
||||||
|
path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
|
||||||
|
|
||||||
|
# Method 1
|
||||||
|
for n in range(2, 9999):
|
||||||
|
p = f'{path}{sep}{n}{suffix}' # increment path
|
||||||
|
if not os.path.exists(p): #
|
||||||
|
break
|
||||||
|
path = Path(p)
|
||||||
|
|
||||||
|
if mkdir:
|
||||||
|
path.mkdir(parents=True, exist_ok=True) # make directory
|
||||||
|
|
||||||
|
return path
|
||||||
|
|
||||||
|
|
||||||
|
def save_yaml(file='data.yaml', data=None):
|
||||||
|
# Single-line safe yaml saving
|
||||||
|
with open(file, 'w') as f:
|
||||||
|
yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False)
|
@ -1,372 +0,0 @@
|
|||||||
# TODO: Follow google docs format for all functions. Easier for automatic doc parser
|
|
||||||
|
|
||||||
import contextlib
|
|
||||||
import logging
|
|
||||||
import os
|
|
||||||
import platform
|
|
||||||
import subprocess
|
|
||||||
import time
|
|
||||||
import urllib
|
|
||||||
from itertools import repeat
|
|
||||||
from multiprocessing.pool import ThreadPool
|
|
||||||
from pathlib import Path
|
|
||||||
from zipfile import ZipFile
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pkg_resources as pkg
|
|
||||||
import requests
|
|
||||||
import torch
|
|
||||||
import yaml
|
|
||||||
|
|
||||||
FILE = Path(__file__).resolve()
|
|
||||||
ROOT = FILE.parents[2] # YOLOv5 root directory
|
|
||||||
RANK = int(os.getenv('RANK', -1))
|
|
||||||
|
|
||||||
# Settings
|
|
||||||
DATASETS_DIR = ROOT.parent / 'datasets' # YOLOv5 datasets directory
|
|
||||||
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
|
|
||||||
AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
|
|
||||||
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode
|
|
||||||
FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf
|
|
||||||
|
|
||||||
|
|
||||||
def is_colab():
|
|
||||||
# Is environment a Google Colab instance?
|
|
||||||
return "COLAB_GPU" in os.environ
|
|
||||||
|
|
||||||
|
|
||||||
def is_kaggle():
|
|
||||||
# Is environment a Kaggle Notebook?
|
|
||||||
return os.environ.get("PWD") == "/kaggle/working" and os.environ.get("KAGGLE_URL_BASE") == "https://www.kaggle.com"
|
|
||||||
|
|
||||||
|
|
||||||
def emojis(str=""):
|
|
||||||
# Return platform-dependent emoji-safe version of string
|
|
||||||
return str.encode().decode("ascii", "ignore") if platform.system() == "Windows" else str
|
|
||||||
|
|
||||||
|
|
||||||
def set_logging(name=None, verbose=VERBOSE):
|
|
||||||
# Sets level and returns logger
|
|
||||||
if is_kaggle() or is_colab():
|
|
||||||
for h in logging.root.handlers:
|
|
||||||
logging.root.removeHandler(h) # remove all handlers associated with the root logger object
|
|
||||||
rank = int(os.getenv("RANK", -1)) # rank in world for Multi-GPU trainings
|
|
||||||
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
|
|
||||||
log = logging.getLogger(name)
|
|
||||||
log.setLevel(level)
|
|
||||||
handler = logging.StreamHandler()
|
|
||||||
handler.setFormatter(logging.Formatter("%(message)s"))
|
|
||||||
handler.setLevel(level)
|
|
||||||
log.addHandler(handler)
|
|
||||||
|
|
||||||
|
|
||||||
set_logging() # run before defining LOGGER
|
|
||||||
LOGGER = logging.getLogger("yolov5") # define globally (used in train.py, val.py, detect.py, etc.)
|
|
||||||
if platform.system() == "Windows":
|
|
||||||
for fn in LOGGER.info, LOGGER.warning:
|
|
||||||
setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging
|
|
||||||
|
|
||||||
|
|
||||||
def segment2box(segment, width=640, height=640):
|
|
||||||
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
|
||||||
x, y = segment.T # segment xy
|
|
||||||
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
|
||||||
x, y, = (
|
|
||||||
x[inside],
|
|
||||||
y[inside],
|
|
||||||
)
|
|
||||||
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros(4) # xyxy
|
|
||||||
|
|
||||||
|
|
||||||
def check_version(current="0.0.0", minimum="0.0.0", name="version ", pinned=False, hard=False, verbose=False):
|
|
||||||
# Check version vs. required version
|
|
||||||
current, minimum = (pkg.parse_version(x) for x in (current, minimum))
|
|
||||||
result = (current == minimum) if pinned else (current >= minimum) # bool
|
|
||||||
s = f"WARNING ⚠️ {name}{minimum} is required by YOLOv5, but {name}{current} is currently installed" # string
|
|
||||||
if hard:
|
|
||||||
assert result, emojis(s) # assert min requirements met
|
|
||||||
if verbose and not result:
|
|
||||||
LOGGER.warning(s)
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
def colorstr(*input):
|
|
||||||
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
|
|
||||||
*args, string = input if len(input) > 1 else ("blue", "bold", input[0]) # color arguments, string
|
|
||||||
colors = {
|
|
||||||
"black": "\033[30m", # basic colors
|
|
||||||
"red": "\033[31m",
|
|
||||||
"green": "\033[32m",
|
|
||||||
"yellow": "\033[33m",
|
|
||||||
"blue": "\033[34m",
|
|
||||||
"magenta": "\033[35m",
|
|
||||||
"cyan": "\033[36m",
|
|
||||||
"white": "\033[37m",
|
|
||||||
"bright_black": "\033[90m", # bright colors
|
|
||||||
"bright_red": "\033[91m",
|
|
||||||
"bright_green": "\033[92m",
|
|
||||||
"bright_yellow": "\033[93m",
|
|
||||||
"bright_blue": "\033[94m",
|
|
||||||
"bright_magenta": "\033[95m",
|
|
||||||
"bright_cyan": "\033[96m",
|
|
||||||
"bright_white": "\033[97m",
|
|
||||||
"end": "\033[0m", # misc
|
|
||||||
"bold": "\033[1m",
|
|
||||||
"underline": "\033[4m",}
|
|
||||||
return "".join(colors[x] for x in args) + f"{string}" + colors["end"]
|
|
||||||
|
|
||||||
|
|
||||||
def xyxy2xywh(x):
|
|
||||||
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
|
||||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
||||||
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
|
||||||
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
|
||||||
y[:, 2] = x[:, 2] - x[:, 0] # width
|
|
||||||
y[:, 3] = x[:, 3] - x[:, 1] # height
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
def xywh2xyxy(x):
|
|
||||||
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
|
||||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
||||||
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
|
||||||
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
|
||||||
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
|
||||||
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
def xywh2ltwh(x):
|
|
||||||
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, w, h] where xy1=top-left
|
|
||||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
||||||
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
|
||||||
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
def xyxy2ltwh(x):
|
|
||||||
# Convert nx4 boxes from [x1, y1, x2, y2] to [x1, y1, w, h] where xy1=top-left, xy2=bottom-right
|
|
||||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
||||||
y[:, 2] = x[:, 2] - x[:, 0] # width
|
|
||||||
y[:, 3] = x[:, 3] - x[:, 1] # height
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
def ltwh2xywh(x):
|
|
||||||
# Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center
|
|
||||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
||||||
y[:, 0] = x[:, 0] + x[:, 2] / 2 # center x
|
|
||||||
y[:, 1] = x[:, 1] + x[:, 3] / 2 # center y
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
def ltwh2xyxy(x):
|
|
||||||
# Convert nx4 boxes from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
|
||||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
||||||
y[:, 2] = x[:, 2] + x[:, 0] # width
|
|
||||||
y[:, 3] = x[:, 3] + x[:, 1] # height
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
def segments2boxes(segments):
|
|
||||||
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
|
|
||||||
boxes = []
|
|
||||||
for s in segments:
|
|
||||||
x, y = s.T # segment xy
|
|
||||||
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
|
|
||||||
return xyxy2xywh(np.array(boxes)) # cls, xywh
|
|
||||||
|
|
||||||
|
|
||||||
def resample_segments(segments, n=1000):
|
|
||||||
# Up-sample an (n,2) segment
|
|
||||||
for i, s in enumerate(segments):
|
|
||||||
s = np.concatenate((s, s[0:1, :]), axis=0)
|
|
||||||
x = np.linspace(0, len(s) - 1, n)
|
|
||||||
xp = np.arange(len(s))
|
|
||||||
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
|
|
||||||
return segments
|
|
||||||
|
|
||||||
|
|
||||||
def increment_path(path, exist_ok=False, sep='', mkdir=False):
|
|
||||||
"""
|
|
||||||
Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
|
|
||||||
# TODO: docs
|
|
||||||
"""
|
|
||||||
path = Path(path) # os-agnostic
|
|
||||||
if path.exists() and not exist_ok:
|
|
||||||
path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
|
|
||||||
|
|
||||||
# Method 1
|
|
||||||
for n in range(2, 9999):
|
|
||||||
p = f'{path}{sep}{n}{suffix}' # increment path
|
|
||||||
if not os.path.exists(p): #
|
|
||||||
break
|
|
||||||
path = Path(p)
|
|
||||||
|
|
||||||
if mkdir:
|
|
||||||
path.mkdir(parents=True, exist_ok=True) # make directory
|
|
||||||
|
|
||||||
return path
|
|
||||||
|
|
||||||
|
|
||||||
def save_yaml(file='data.yaml', data=None):
|
|
||||||
# Single-line safe yaml saving
|
|
||||||
with open(file, 'w') as f:
|
|
||||||
yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False)
|
|
||||||
|
|
||||||
|
|
||||||
def download(url, dir=Path.cwd(), unzip=True, delete=True, curl=False, threads=1, retry=3):
|
|
||||||
# Multithreaded file download and unzip function, used in data.yaml for autodownload
|
|
||||||
def download_one(url, dir):
|
|
||||||
# Download 1 file
|
|
||||||
success = True
|
|
||||||
if Path(url).is_file():
|
|
||||||
f = Path(url) # filename
|
|
||||||
else: # does not exist
|
|
||||||
f = dir / Path(url).name
|
|
||||||
LOGGER.info(f'Downloading {url} to {f}...')
|
|
||||||
for i in range(retry + 1):
|
|
||||||
if curl:
|
|
||||||
s = 'sS' if threads > 1 else '' # silent
|
|
||||||
r = os.system(
|
|
||||||
f'curl -# -{s}L "{url}" -o "{f}" --retry 9 -C -') # curl download with retry, continue
|
|
||||||
success = r == 0
|
|
||||||
else:
|
|
||||||
torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download
|
|
||||||
success = f.is_file()
|
|
||||||
if success:
|
|
||||||
break
|
|
||||||
elif i < retry:
|
|
||||||
LOGGER.warning(f'⚠️ Download failure, retrying {i + 1}/{retry} {url}...')
|
|
||||||
else:
|
|
||||||
LOGGER.warning(f'❌ Failed to download {url}...')
|
|
||||||
|
|
||||||
if unzip and success and f.suffix in ('.zip', '.tar', '.gz'):
|
|
||||||
LOGGER.info(f'Unzipping {f}...')
|
|
||||||
if f.suffix == '.zip':
|
|
||||||
ZipFile(f).extractall(path=dir) # unzip
|
|
||||||
elif f.suffix == '.tar':
|
|
||||||
os.system(f'tar xf {f} --directory {f.parent}') # unzip
|
|
||||||
elif f.suffix == '.gz':
|
|
||||||
os.system(f'tar xfz {f} --directory {f.parent}') # unzip
|
|
||||||
if delete:
|
|
||||||
f.unlink() # remove zip
|
|
||||||
|
|
||||||
dir = Path(dir)
|
|
||||||
dir.mkdir(parents=True, exist_ok=True) # make directory
|
|
||||||
if threads > 1:
|
|
||||||
pool = ThreadPool(threads)
|
|
||||||
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multithreaded
|
|
||||||
pool.close()
|
|
||||||
pool.join()
|
|
||||||
else:
|
|
||||||
for u in [url] if isinstance(url, (str, Path)) else url:
|
|
||||||
download_one(u, dir)
|
|
||||||
|
|
||||||
|
|
||||||
class WorkingDirectory(contextlib.ContextDecorator):
|
|
||||||
# Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
|
|
||||||
def __init__(self, new_dir):
|
|
||||||
self.dir = new_dir # new dir
|
|
||||||
self.cwd = Path.cwd().resolve() # current dir
|
|
||||||
|
|
||||||
def __enter__(self):
|
|
||||||
os.chdir(self.dir)
|
|
||||||
|
|
||||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
||||||
os.chdir(self.cwd)
|
|
||||||
|
|
||||||
|
|
||||||
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
|
|
||||||
# Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
|
|
||||||
|
|
||||||
file = Path(file)
|
|
||||||
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
|
|
||||||
try: # url1
|
|
||||||
LOGGER.info(f'Downloading {url} to {file}...')
|
|
||||||
torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
|
|
||||||
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
|
|
||||||
except Exception as e: # url2
|
|
||||||
if file.exists():
|
|
||||||
file.unlink() # remove partial downloads
|
|
||||||
LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
|
|
||||||
os.system(f"curl -# -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
|
|
||||||
finally:
|
|
||||||
if not file.exists() or file.stat().st_size < min_bytes: # check
|
|
||||||
if file.exists():
|
|
||||||
file.unlink() # remove partial downloads
|
|
||||||
LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
|
|
||||||
LOGGER.info('')
|
|
||||||
|
|
||||||
|
|
||||||
def attempt_download(file, repo='ultralytics/yolov5', release='v6.2'):
|
|
||||||
# Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v6.2', etc.
|
|
||||||
|
|
||||||
def github_assets(repository, version='latest'):
|
|
||||||
# Return GitHub repo tag and assets (i.e. ['yolov5s.pt', 'yolov5m.pt', ...])
|
|
||||||
if version != 'latest':
|
|
||||||
version = f'tags/{version}' # i.e. tags/v6.2
|
|
||||||
response = requests.get(f'https://api.github.com/repos/{repository}/releases/{version}').json() # github api
|
|
||||||
return response['tag_name'], [x['name'] for x in response['assets']] # tag, assets
|
|
||||||
|
|
||||||
file = Path(str(file).strip().replace("'", ''))
|
|
||||||
if not file.exists():
|
|
||||||
# URL specified
|
|
||||||
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
|
|
||||||
if str(file).startswith(('http:/', 'https:/')): # download
|
|
||||||
url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
|
|
||||||
file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
|
|
||||||
if Path(file).is_file():
|
|
||||||
LOGGER.info(f'Found {url} locally at {file}') # file already exists
|
|
||||||
else:
|
|
||||||
safe_download(file=file, url=url, min_bytes=1E5)
|
|
||||||
return file
|
|
||||||
|
|
||||||
# GitHub assets
|
|
||||||
assets = [f'yolov5{size}{suffix}.pt' for size in 'nsmlx' for suffix in ('', '6', '-cls', '-seg')] # default
|
|
||||||
try:
|
|
||||||
tag, assets = github_assets(repo, release)
|
|
||||||
except Exception:
|
|
||||||
try:
|
|
||||||
tag, assets = github_assets(repo) # latest release
|
|
||||||
except Exception:
|
|
||||||
try:
|
|
||||||
tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
|
|
||||||
except Exception:
|
|
||||||
tag = release
|
|
||||||
|
|
||||||
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
|
|
||||||
if name in assets:
|
|
||||||
url3 = 'https://drive.google.com/drive/folders/1EFQTEUeXWSFww0luse2jB9M1QNZQGwNl' # backup gdrive mirror
|
|
||||||
safe_download(
|
|
||||||
file,
|
|
||||||
url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
|
|
||||||
min_bytes=1E5,
|
|
||||||
error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/{tag} or {url3}')
|
|
||||||
|
|
||||||
return str(file)
|
|
||||||
|
|
||||||
|
|
||||||
def get_model(model: str):
|
|
||||||
# check for local weights
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
class Profile(contextlib.ContextDecorator):
|
|
||||||
# YOLOv5 Profile class. Usage: @Profile() decorator or 'with Profile():' context manager
|
|
||||||
def __init__(self, t=0.0):
|
|
||||||
self.t = t
|
|
||||||
self.cuda = torch.cuda.is_available()
|
|
||||||
|
|
||||||
def __enter__(self):
|
|
||||||
self.start = self.time()
|
|
||||||
return self
|
|
||||||
|
|
||||||
def __exit__(self, type, value, traceback):
|
|
||||||
self.dt = self.time() - self.start # delta-time
|
|
||||||
self.t += self.dt # accumulate dt
|
|
||||||
|
|
||||||
def time(self):
|
|
||||||
if self.cuda:
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
return time.time()
|
|
@ -1,3 +1,57 @@
|
|||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
|
||||||
from .base import default_callbacks
|
from .base import default_callbacks
|
||||||
|
|
||||||
__all__ = ["default_callbacks"]
|
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode
|
||||||
|
|
||||||
|
|
||||||
|
# console logging utils
|
||||||
|
def emojis(str=''):
|
||||||
|
# Return platform-dependent emoji-safe version of string
|
||||||
|
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
||||||
|
|
||||||
|
|
||||||
|
def colorstr(*input):
|
||||||
|
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
|
||||||
|
*args, string = input if len(input) > 1 else ("blue", "bold", input[0]) # color arguments, string
|
||||||
|
colors = {
|
||||||
|
"black": "\033[30m", # basic colors
|
||||||
|
"red": "\033[31m",
|
||||||
|
"green": "\033[32m",
|
||||||
|
"yellow": "\033[33m",
|
||||||
|
"blue": "\033[34m",
|
||||||
|
"magenta": "\033[35m",
|
||||||
|
"cyan": "\033[36m",
|
||||||
|
"white": "\033[37m",
|
||||||
|
"bright_black": "\033[90m", # bright colors
|
||||||
|
"bright_red": "\033[91m",
|
||||||
|
"bright_green": "\033[92m",
|
||||||
|
"bright_yellow": "\033[93m",
|
||||||
|
"bright_blue": "\033[94m",
|
||||||
|
"bright_magenta": "\033[95m",
|
||||||
|
"bright_cyan": "\033[96m",
|
||||||
|
"bright_white": "\033[97m",
|
||||||
|
"end": "\033[0m", # misc
|
||||||
|
"bold": "\033[1m",
|
||||||
|
"underline": "\033[4m",}
|
||||||
|
return "".join(colors[x] for x in args) + f"{string}" + colors["end"]
|
||||||
|
|
||||||
|
|
||||||
|
def set_logging(name=None, verbose=VERBOSE):
|
||||||
|
# Sets level and returns logger
|
||||||
|
is_kaggle = os.environ.get("PWD") == "/kaggle/working" and os.environ.get(
|
||||||
|
"KAGGLE_URL_BASE") == "https://www.kaggle.com"
|
||||||
|
is_colab = "COLAB_GPU" in os.environ
|
||||||
|
if is_colab or is_kaggle:
|
||||||
|
for h in logging.root.handlers:
|
||||||
|
logging.root.removeHandler(h) # remove all handlers associated with the root logger object
|
||||||
|
rank = int(os.getenv("RANK", -1)) # rank in world for Multi-GPU trainings
|
||||||
|
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
|
||||||
|
log = logging.getLogger(name)
|
||||||
|
log.setLevel(level)
|
||||||
|
handler = logging.StreamHandler()
|
||||||
|
handler.setFormatter(logging.Formatter("%(message)s"))
|
||||||
|
handler.setLevel(level)
|
||||||
|
log.addHandler(handler)
|
||||||
|
@ -0,0 +1,113 @@
|
|||||||
|
import contextlib
|
||||||
|
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
from ultralytics.yolo.utils.downloads import attempt_download
|
||||||
|
|
||||||
|
from .modules import *
|
||||||
|
|
||||||
|
|
||||||
|
def attempt_load_weights(weights, device=None, inplace=True, fuse=True):
|
||||||
|
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
||||||
|
|
||||||
|
model = Ensemble()
|
||||||
|
for w in weights if isinstance(weights, list) else [weights]:
|
||||||
|
ckpt = torch.load(attempt_download(w), map_location='cpu') # load
|
||||||
|
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
||||||
|
|
||||||
|
# Model compatibility updates
|
||||||
|
if not hasattr(ckpt, 'stride'):
|
||||||
|
ckpt.stride = torch.tensor([32.])
|
||||||
|
if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
|
||||||
|
ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
|
||||||
|
|
||||||
|
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
|
||||||
|
|
||||||
|
# Module compatibility updates
|
||||||
|
for m in model.modules():
|
||||||
|
t = type(m)
|
||||||
|
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
|
||||||
|
m.inplace = inplace # torch 1.7.0 compatibility
|
||||||
|
if t is Detect and not isinstance(m.anchor_grid, list):
|
||||||
|
delattr(m, 'anchor_grid')
|
||||||
|
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
|
||||||
|
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
||||||
|
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
||||||
|
|
||||||
|
# Return model
|
||||||
|
if len(model) == 1:
|
||||||
|
return model[-1]
|
||||||
|
|
||||||
|
# Return detection ensemble
|
||||||
|
print(f'Ensemble created with {weights}\n')
|
||||||
|
for k in 'names', 'nc', 'yaml':
|
||||||
|
setattr(model, k, getattr(model[0], k))
|
||||||
|
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
||||||
|
assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def parse_model(d, ch): # model_dict, input_channels(3)
|
||||||
|
# Parse a YOLOv5 model.yaml dictionary
|
||||||
|
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
||||||
|
anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
|
||||||
|
if act:
|
||||||
|
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
||||||
|
LOGGER.info(f"{colorstr('activation:')} {act}") # print
|
||||||
|
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
||||||
|
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
||||||
|
|
||||||
|
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||||||
|
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
||||||
|
m = eval(m) if isinstance(m, str) else m # eval strings
|
||||||
|
for j, a in enumerate(args):
|
||||||
|
with contextlib.suppress(NameError):
|
||||||
|
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
||||||
|
|
||||||
|
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||||||
|
if m in {
|
||||||
|
Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, CrossConv, BottleneckCSP, C3,
|
||||||
|
C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
|
||||||
|
c1, c2 = ch[f], args[0]
|
||||||
|
if c2 != no: # if not output
|
||||||
|
c2 = make_divisible(c2 * gw, 8)
|
||||||
|
|
||||||
|
args = [c1, c2, *args[1:]]
|
||||||
|
if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
|
||||||
|
args.insert(2, n) # number of repeats
|
||||||
|
n = 1
|
||||||
|
elif m is nn.BatchNorm2d:
|
||||||
|
args = [ch[f]]
|
||||||
|
elif m is Concat:
|
||||||
|
c2 = sum(ch[x] for x in f)
|
||||||
|
# TODO: channel, gw, gd
|
||||||
|
elif m in {Detect, Segment}:
|
||||||
|
args.append([ch[x] for x in f])
|
||||||
|
if isinstance(args[1], int): # number of anchors
|
||||||
|
args[1] = [list(range(args[1] * 2))] * len(f)
|
||||||
|
if m is Segment:
|
||||||
|
args[3] = make_divisible(args[3] * gw, 8)
|
||||||
|
elif m is Contract:
|
||||||
|
c2 = ch[f] * args[0] ** 2
|
||||||
|
elif m is Expand:
|
||||||
|
c2 = ch[f] // args[0] ** 2
|
||||||
|
else:
|
||||||
|
c2 = ch[f]
|
||||||
|
|
||||||
|
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
||||||
|
t = str(m)[8:-2].replace('__main__.', '') # module type
|
||||||
|
np = sum(x.numel() for x in m_.parameters()) # number params
|
||||||
|
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
||||||
|
LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
|
||||||
|
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||||||
|
layers.append(m_)
|
||||||
|
if i == 0:
|
||||||
|
ch = []
|
||||||
|
ch.append(c2)
|
||||||
|
return nn.Sequential(*layers), sorted(save)
|
||||||
|
|
||||||
|
|
||||||
|
def yaml_load(file='data.yaml'):
|
||||||
|
# Single-line safe yaml loading
|
||||||
|
with open(file, errors='ignore') as f:
|
||||||
|
return yaml.safe_load(f)
|
@ -0,0 +1,324 @@
|
|||||||
|
import json
|
||||||
|
import platform
|
||||||
|
from collections import OrderedDict, namedtuple
|
||||||
|
from pathlib import Path
|
||||||
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
from ultralytics.yolo.utils import LOGGER, ROOT
|
||||||
|
from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_version
|
||||||
|
from ultralytics.yolo.utils.downloads import attempt_download, is_url
|
||||||
|
from ultralytics.yolo.utils.ops import xywh2xyxy
|
||||||
|
|
||||||
|
|
||||||
|
class AutoBackend(nn.Module):
|
||||||
|
# YOLOv5 MultiBackend class for python inference on various backends
|
||||||
|
def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
|
||||||
|
# Usage:
|
||||||
|
# PyTorch: weights = *.pt
|
||||||
|
# TorchScript: *.torchscript
|
||||||
|
# ONNX Runtime: *.onnx
|
||||||
|
# ONNX OpenCV DNN: *.onnx --dnn
|
||||||
|
# OpenVINO: *.xml
|
||||||
|
# CoreML: *.mlmodel
|
||||||
|
# TensorRT: *.engine
|
||||||
|
# TensorFlow SavedModel: *_saved_model
|
||||||
|
# TensorFlow GraphDef: *.pb
|
||||||
|
# TensorFlow Lite: *.tflite
|
||||||
|
# TensorFlow Edge TPU: *_edgetpu.tflite
|
||||||
|
# PaddlePaddle: *_paddle_model
|
||||||
|
from ultralytics.yolo.utils.modeling import attempt_load_weights, yaml_load
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
w = str(weights[0] if isinstance(weights, list) else weights)
|
||||||
|
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
|
||||||
|
fp16 &= pt or jit or onnx or engine # FP16
|
||||||
|
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
|
||||||
|
stride = 32 # default stride
|
||||||
|
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
|
||||||
|
if not (pt or triton):
|
||||||
|
w = attempt_download(w) # download if not local
|
||||||
|
|
||||||
|
if pt: # PyTorch
|
||||||
|
model = attempt_load_weights(weights if isinstance(weights, list) else w,
|
||||||
|
device=device,
|
||||||
|
inplace=True,
|
||||||
|
fuse=fuse)
|
||||||
|
stride = max(int(model.stride.max()), 32) # model stride
|
||||||
|
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
||||||
|
model.half() if fp16 else model.float()
|
||||||
|
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
||||||
|
elif jit: # TorchScript
|
||||||
|
LOGGER.info(f'Loading {w} for TorchScript inference...')
|
||||||
|
extra_files = {'config.txt': ''} # model metadata
|
||||||
|
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
|
||||||
|
model.half() if fp16 else model.float()
|
||||||
|
if extra_files['config.txt']: # load metadata dict
|
||||||
|
d = json.loads(extra_files['config.txt'],
|
||||||
|
object_hook=lambda d: {int(k) if k.isdigit() else k: v
|
||||||
|
for k, v in d.items()})
|
||||||
|
stride, names = int(d['stride']), d['names']
|
||||||
|
elif dnn: # ONNX OpenCV DNN
|
||||||
|
LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
|
||||||
|
check_requirements('opencv-python>=4.5.4')
|
||||||
|
net = cv2.dnn.readNetFromONNX(w)
|
||||||
|
elif onnx: # ONNX Runtime
|
||||||
|
LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
|
||||||
|
check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
|
||||||
|
import onnxruntime
|
||||||
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
|
||||||
|
session = onnxruntime.InferenceSession(w, providers=providers)
|
||||||
|
output_names = [x.name for x in session.get_outputs()]
|
||||||
|
meta = session.get_modelmeta().custom_metadata_map # metadata
|
||||||
|
if 'stride' in meta:
|
||||||
|
stride, names = int(meta['stride']), eval(meta['names'])
|
||||||
|
elif xml: # OpenVINO
|
||||||
|
LOGGER.info(f'Loading {w} for OpenVINO inference...')
|
||||||
|
check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
||||||
|
from openvino.runtime import Core, Layout, get_batch
|
||||||
|
ie = Core()
|
||||||
|
if not Path(w).is_file(): # if not *.xml
|
||||||
|
w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
|
||||||
|
network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
|
||||||
|
if network.get_parameters()[0].get_layout().empty:
|
||||||
|
network.get_parameters()[0].set_layout(Layout("NCHW"))
|
||||||
|
batch_dim = get_batch(network)
|
||||||
|
if batch_dim.is_static:
|
||||||
|
batch_size = batch_dim.get_length()
|
||||||
|
executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
|
||||||
|
stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata
|
||||||
|
elif engine: # TensorRT
|
||||||
|
LOGGER.info(f'Loading {w} for TensorRT inference...')
|
||||||
|
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
|
||||||
|
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
|
||||||
|
if device.type == 'cpu':
|
||||||
|
device = torch.device('cuda:0')
|
||||||
|
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
|
||||||
|
logger = trt.Logger(trt.Logger.INFO)
|
||||||
|
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
|
||||||
|
model = runtime.deserialize_cuda_engine(f.read())
|
||||||
|
context = model.create_execution_context()
|
||||||
|
bindings = OrderedDict()
|
||||||
|
output_names = []
|
||||||
|
fp16 = False # default updated below
|
||||||
|
dynamic = False
|
||||||
|
for i in range(model.num_bindings):
|
||||||
|
name = model.get_binding_name(i)
|
||||||
|
dtype = trt.nptype(model.get_binding_dtype(i))
|
||||||
|
if model.binding_is_input(i):
|
||||||
|
if -1 in tuple(model.get_binding_shape(i)): # dynamic
|
||||||
|
dynamic = True
|
||||||
|
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
|
||||||
|
if dtype == np.float16:
|
||||||
|
fp16 = True
|
||||||
|
else: # output
|
||||||
|
output_names.append(name)
|
||||||
|
shape = tuple(context.get_binding_shape(i))
|
||||||
|
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
|
||||||
|
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
|
||||||
|
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
||||||
|
batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
|
||||||
|
elif coreml: # CoreML
|
||||||
|
LOGGER.info(f'Loading {w} for CoreML inference...')
|
||||||
|
import coremltools as ct
|
||||||
|
model = ct.models.MLModel(w)
|
||||||
|
elif saved_model: # TF SavedModel
|
||||||
|
LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
|
||||||
|
import tensorflow as tf
|
||||||
|
keras = False # assume TF1 saved_model
|
||||||
|
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
||||||
|
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
||||||
|
LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
def wrap_frozen_graph(gd, inputs, outputs):
|
||||||
|
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
|
||||||
|
ge = x.graph.as_graph_element
|
||||||
|
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
|
||||||
|
|
||||||
|
def gd_outputs(gd):
|
||||||
|
name_list, input_list = [], []
|
||||||
|
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
|
||||||
|
name_list.append(node.name)
|
||||||
|
input_list.extend(node.input)
|
||||||
|
return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))
|
||||||
|
|
||||||
|
gd = tf.Graph().as_graph_def() # TF GraphDef
|
||||||
|
with open(w, 'rb') as f:
|
||||||
|
gd.ParseFromString(f.read())
|
||||||
|
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
|
||||||
|
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
||||||
|
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
|
||||||
|
from tflite_runtime.interpreter import Interpreter, load_delegate
|
||||||
|
except ImportError:
|
||||||
|
import tensorflow as tf
|
||||||
|
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
|
||||||
|
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
|
||||||
|
LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
|
||||||
|
delegate = {
|
||||||
|
'Linux': 'libedgetpu.so.1',
|
||||||
|
'Darwin': 'libedgetpu.1.dylib',
|
||||||
|
'Windows': 'edgetpu.dll'}[platform.system()]
|
||||||
|
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
|
||||||
|
else: # TFLite
|
||||||
|
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
|
||||||
|
interpreter = Interpreter(model_path=w) # load TFLite model
|
||||||
|
interpreter.allocate_tensors() # allocate
|
||||||
|
input_details = interpreter.get_input_details() # inputs
|
||||||
|
output_details = interpreter.get_output_details() # outputs
|
||||||
|
elif tfjs: # TF.js
|
||||||
|
raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported')
|
||||||
|
elif paddle: # PaddlePaddle
|
||||||
|
LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
|
||||||
|
check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
|
||||||
|
import paddle.inference as pdi
|
||||||
|
if not Path(w).is_file(): # if not *.pdmodel
|
||||||
|
w = next(Path(w).rglob('*.pdmodel')) # get *.xml file from *_openvino_model dir
|
||||||
|
weights = Path(w).with_suffix('.pdiparams')
|
||||||
|
config = pdi.Config(str(w), str(weights))
|
||||||
|
if cuda:
|
||||||
|
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
|
||||||
|
predictor = pdi.create_predictor(config)
|
||||||
|
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
|
||||||
|
output_names = predictor.get_output_names()
|
||||||
|
elif triton: # NVIDIA Triton Inference Server
|
||||||
|
LOGGER.info('Triton Inference Server not supported...')
|
||||||
|
'''
|
||||||
|
TODO:
|
||||||
|
check_requirements('tritonclient[all]')
|
||||||
|
from utils.triton import TritonRemoteModel
|
||||||
|
model = TritonRemoteModel(url=w)
|
||||||
|
nhwc = model.runtime.startswith("tensorflow")
|
||||||
|
'''
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f'ERROR: {w} is not a supported format')
|
||||||
|
|
||||||
|
# class names
|
||||||
|
if 'names' not in locals():
|
||||||
|
names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
|
||||||
|
if names[0] == 'n01440764' and len(names) == 1000: # ImageNet
|
||||||
|
names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names
|
||||||
|
|
||||||
|
self.__dict__.update(locals()) # assign all variables to self
|
||||||
|
|
||||||
|
def forward(self, im, augment=False, visualize=False):
|
||||||
|
# YOLOv5 MultiBackend inference
|
||||||
|
b, ch, h, w = im.shape # batch, channel, height, width
|
||||||
|
if self.fp16 and im.dtype != torch.float16:
|
||||||
|
im = im.half() # to FP16
|
||||||
|
if self.nhwc:
|
||||||
|
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
|
||||||
|
|
||||||
|
if self.pt: # PyTorch
|
||||||
|
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
|
||||||
|
elif self.jit: # TorchScript
|
||||||
|
y = self.model(im)
|
||||||
|
elif self.dnn: # ONNX OpenCV DNN
|
||||||
|
im = im.cpu().numpy() # torch to numpy
|
||||||
|
self.net.setInput(im)
|
||||||
|
y = self.net.forward()
|
||||||
|
elif self.onnx: # ONNX Runtime
|
||||||
|
im = im.cpu().numpy() # torch to numpy
|
||||||
|
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
|
||||||
|
elif self.xml: # OpenVINO
|
||||||
|
im = im.cpu().numpy() # FP32
|
||||||
|
y = list(self.executable_network([im]).values())
|
||||||
|
elif self.engine: # TensorRT
|
||||||
|
if self.dynamic and im.shape != self.bindings['images'].shape:
|
||||||
|
i = self.model.get_binding_index('images')
|
||||||
|
self.context.set_binding_shape(i, im.shape) # reshape if dynamic
|
||||||
|
self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
|
||||||
|
for name in self.output_names:
|
||||||
|
i = self.model.get_binding_index(name)
|
||||||
|
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
|
||||||
|
s = self.bindings['images'].shape
|
||||||
|
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
|
||||||
|
self.binding_addrs['images'] = int(im.data_ptr())
|
||||||
|
self.context.execute_v2(list(self.binding_addrs.values()))
|
||||||
|
y = [self.bindings[x].data for x in sorted(self.output_names)]
|
||||||
|
elif self.coreml: # CoreML
|
||||||
|
im = im.cpu().numpy()
|
||||||
|
im = Image.fromarray((im[0] * 255).astype('uint8'))
|
||||||
|
# im = im.resize((192, 320), Image.ANTIALIAS)
|
||||||
|
y = self.model.predict({'image': im}) # coordinates are xywh normalized
|
||||||
|
if 'confidence' in y:
|
||||||
|
box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
||||||
|
conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
|
||||||
|
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
||||||
|
else:
|
||||||
|
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
|
||||||
|
elif self.paddle: # PaddlePaddle
|
||||||
|
im = im.cpu().numpy().astype(np.float32)
|
||||||
|
self.input_handle.copy_from_cpu(im)
|
||||||
|
self.predictor.run()
|
||||||
|
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
|
||||||
|
elif self.triton: # NVIDIA Triton Inference Server
|
||||||
|
y = self.model(im)
|
||||||
|
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
||||||
|
im = im.cpu().numpy()
|
||||||
|
if self.saved_model: # SavedModel
|
||||||
|
y = self.model(im, training=False) if self.keras else self.model(im)
|
||||||
|
elif self.pb: # GraphDef
|
||||||
|
y = self.frozen_func(x=self.tf.constant(im))
|
||||||
|
else: # Lite or Edge TPU
|
||||||
|
input = self.input_details[0]
|
||||||
|
int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
|
||||||
|
if int8:
|
||||||
|
scale, zero_point = input['quantization']
|
||||||
|
im = (im / scale + zero_point).astype(np.uint8) # de-scale
|
||||||
|
self.interpreter.set_tensor(input['index'], im)
|
||||||
|
self.interpreter.invoke()
|
||||||
|
y = []
|
||||||
|
for output in self.output_details:
|
||||||
|
x = self.interpreter.get_tensor(output['index'])
|
||||||
|
if int8:
|
||||||
|
scale, zero_point = output['quantization']
|
||||||
|
x = (x.astype(np.float32) - zero_point) * scale # re-scale
|
||||||
|
y.append(x)
|
||||||
|
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
|
||||||
|
y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
|
||||||
|
|
||||||
|
if isinstance(y, (list, tuple)):
|
||||||
|
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
|
||||||
|
else:
|
||||||
|
return self.from_numpy(y)
|
||||||
|
|
||||||
|
def from_numpy(self, x):
|
||||||
|
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
|
||||||
|
|
||||||
|
def warmup(self, imgsz=(1, 3, 640, 640)):
|
||||||
|
# Warmup model by running inference once
|
||||||
|
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
|
||||||
|
if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
|
||||||
|
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
|
||||||
|
for _ in range(2 if self.jit else 1): #
|
||||||
|
self.forward(im) # warmup
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _model_type(p='path/to/model.pt'):
|
||||||
|
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
|
||||||
|
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
|
||||||
|
from export import export_formats
|
||||||
|
sf = list(export_formats().Suffix) # export suffixes
|
||||||
|
if not is_url(p, check=False):
|
||||||
|
check_suffix(p, sf) # checks
|
||||||
|
url = urlparse(p) # if url may be Triton inference server
|
||||||
|
types = [s in Path(p).name for s in sf]
|
||||||
|
types[8] &= not types[9] # tflite &= not edgetpu
|
||||||
|
triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
|
||||||
|
return types + [triton]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _load_metadata(f=Path('path/to/meta.yaml')):
|
||||||
|
from ultralytics.yolo.utils.modeling import yaml_load
|
||||||
|
|
||||||
|
# Load metadata from meta.yaml if it exists
|
||||||
|
if f.exists():
|
||||||
|
d = yaml_load(f)
|
||||||
|
return d['stride'], d['names'] # assign stride, names
|
||||||
|
return None, None
|
@ -0,0 +1,635 @@
|
|||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Common modules
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import math
|
||||||
|
import warnings
|
||||||
|
from copy import copy
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import requests
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from PIL import Image, ImageOps
|
||||||
|
from torch.cuda import amp
|
||||||
|
|
||||||
|
from ultralytics.yolo.data.augment import LetterBox
|
||||||
|
from ultralytics.yolo.utils import LOGGER
|
||||||
|
from ultralytics.yolo.utils.checks import check_version
|
||||||
|
from ultralytics.yolo.utils.files import increment_path
|
||||||
|
from ultralytics.yolo.utils.loggers import colorstr
|
||||||
|
from ultralytics.yolo.utils.ops import Profile, make_divisible, non_max_suppression, scale_boxes, xyxy2xywh
|
||||||
|
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
|
||||||
|
from ultralytics.yolo.utils.torch_utils import copy_attr, smart_inference_mode
|
||||||
|
|
||||||
|
from .autobackend import AutoBackend
|
||||||
|
|
||||||
|
# from utils.plots import feature_visualization TODO
|
||||||
|
|
||||||
|
|
||||||
|
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
||||||
|
# Pad to 'same' shape outputs
|
||||||
|
if d > 1:
|
||||||
|
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
|
||||||
|
if p is None:
|
||||||
|
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
||||||
|
return p
|
||||||
|
|
||||||
|
|
||||||
|
class Conv(nn.Module):
|
||||||
|
# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
|
||||||
|
default_act = nn.SiLU() # default activation
|
||||||
|
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
|
||||||
|
super().__init__()
|
||||||
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
|
||||||
|
self.bn = nn.BatchNorm2d(c2)
|
||||||
|
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.act(self.bn(self.conv(x)))
|
||||||
|
|
||||||
|
def forward_fuse(self, x):
|
||||||
|
return self.act(self.conv(x))
|
||||||
|
|
||||||
|
|
||||||
|
class DWConv(Conv):
|
||||||
|
# Depth-wise convolution
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
|
||||||
|
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
|
||||||
|
|
||||||
|
|
||||||
|
class DWConvTranspose2d(nn.ConvTranspose2d):
|
||||||
|
# Depth-wise transpose convolution
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
|
||||||
|
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerLayer(nn.Module):
|
||||||
|
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
|
||||||
|
def __init__(self, c, num_heads):
|
||||||
|
super().__init__()
|
||||||
|
self.q = nn.Linear(c, c, bias=False)
|
||||||
|
self.k = nn.Linear(c, c, bias=False)
|
||||||
|
self.v = nn.Linear(c, c, bias=False)
|
||||||
|
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
||||||
|
self.fc1 = nn.Linear(c, c, bias=False)
|
||||||
|
self.fc2 = nn.Linear(c, c, bias=False)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
||||||
|
x = self.fc2(self.fc1(x)) + x
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerBlock(nn.Module):
|
||||||
|
# Vision Transformer https://arxiv.org/abs/2010.11929
|
||||||
|
def __init__(self, c1, c2, num_heads, num_layers):
|
||||||
|
super().__init__()
|
||||||
|
self.conv = None
|
||||||
|
if c1 != c2:
|
||||||
|
self.conv = Conv(c1, c2)
|
||||||
|
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
||||||
|
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
|
||||||
|
self.c2 = c2
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
if self.conv is not None:
|
||||||
|
x = self.conv(x)
|
||||||
|
b, _, w, h = x.shape
|
||||||
|
p = x.flatten(2).permute(2, 0, 1)
|
||||||
|
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
|
||||||
|
|
||||||
|
|
||||||
|
class Bottleneck(nn.Module):
|
||||||
|
# Standard bottleneck
|
||||||
|
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
||||||
|
super().__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
||||||
|
self.add = shortcut and c1 == c2
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||||
|
|
||||||
|
|
||||||
|
class BottleneckCSP(nn.Module):
|
||||||
|
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
||||||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||||
|
super().__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
||||||
|
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
||||||
|
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
||||||
|
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
||||||
|
self.act = nn.SiLU()
|
||||||
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
y1 = self.cv3(self.m(self.cv1(x)))
|
||||||
|
y2 = self.cv2(x)
|
||||||
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
||||||
|
|
||||||
|
|
||||||
|
class CrossConv(nn.Module):
|
||||||
|
# Cross Convolution Downsample
|
||||||
|
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
||||||
|
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
||||||
|
super().__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
||||||
|
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
||||||
|
self.add = shortcut and c1 == c2
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||||
|
|
||||||
|
|
||||||
|
class C3(nn.Module):
|
||||||
|
# CSP Bottleneck with 3 convolutions
|
||||||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||||
|
super().__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
||||||
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
||||||
|
|
||||||
|
|
||||||
|
class C3x(C3):
|
||||||
|
# C3 module with cross-convolutions
|
||||||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||||
|
super().__init__(c1, c2, n, shortcut, g, e)
|
||||||
|
c_ = int(c2 * e)
|
||||||
|
self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
|
||||||
|
|
||||||
|
|
||||||
|
class C3TR(C3):
|
||||||
|
# C3 module with TransformerBlock()
|
||||||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||||
|
super().__init__(c1, c2, n, shortcut, g, e)
|
||||||
|
c_ = int(c2 * e)
|
||||||
|
self.m = TransformerBlock(c_, c_, 4, n)
|
||||||
|
|
||||||
|
|
||||||
|
class C3SPP(C3):
|
||||||
|
# C3 module with SPP()
|
||||||
|
def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
|
||||||
|
super().__init__(c1, c2, n, shortcut, g, e)
|
||||||
|
c_ = int(c2 * e)
|
||||||
|
self.m = SPP(c_, c_, k)
|
||||||
|
|
||||||
|
|
||||||
|
class C3Ghost(C3):
|
||||||
|
# C3 module with GhostBottleneck()
|
||||||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||||
|
super().__init__(c1, c2, n, shortcut, g, e)
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
|
||||||
|
|
||||||
|
|
||||||
|
class SPP(nn.Module):
|
||||||
|
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
|
||||||
|
def __init__(self, c1, c2, k=(5, 9, 13)):
|
||||||
|
super().__init__()
|
||||||
|
c_ = c1 // 2 # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
||||||
|
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.cv1(x)
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
||||||
|
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
||||||
|
|
||||||
|
|
||||||
|
class SPPF(nn.Module):
|
||||||
|
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
|
||||||
|
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
||||||
|
super().__init__()
|
||||||
|
c_ = c1 // 2 # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
||||||
|
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.cv1(x)
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
||||||
|
y1 = self.m(x)
|
||||||
|
y2 = self.m(y1)
|
||||||
|
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|
||||||
|
|
||||||
|
|
||||||
|
class Focus(nn.Module):
|
||||||
|
# Focus wh information into c-space
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||||
|
super().__init__()
|
||||||
|
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
|
||||||
|
# self.contract = Contract(gain=2)
|
||||||
|
|
||||||
|
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
||||||
|
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
|
||||||
|
# return self.conv(self.contract(x))
|
||||||
|
|
||||||
|
|
||||||
|
class GhostConv(nn.Module):
|
||||||
|
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
||||||
|
super().__init__()
|
||||||
|
c_ = c2 // 2 # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
|
||||||
|
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
y = self.cv1(x)
|
||||||
|
return torch.cat((y, self.cv2(y)), 1)
|
||||||
|
|
||||||
|
|
||||||
|
class GhostBottleneck(nn.Module):
|
||||||
|
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
||||||
|
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
||||||
|
super().__init__()
|
||||||
|
c_ = c2 // 2
|
||||||
|
self.conv = nn.Sequential(
|
||||||
|
GhostConv(c1, c_, 1, 1), # pw
|
||||||
|
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
||||||
|
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
||||||
|
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
|
||||||
|
act=False)) if s == 2 else nn.Identity()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.conv(x) + self.shortcut(x)
|
||||||
|
|
||||||
|
|
||||||
|
class Contract(nn.Module):
|
||||||
|
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
||||||
|
def __init__(self, gain=2):
|
||||||
|
super().__init__()
|
||||||
|
self.gain = gain
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
|
||||||
|
s = self.gain
|
||||||
|
x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
|
||||||
|
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
||||||
|
return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
|
||||||
|
|
||||||
|
|
||||||
|
class Expand(nn.Module):
|
||||||
|
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
||||||
|
def __init__(self, gain=2):
|
||||||
|
super().__init__()
|
||||||
|
self.gain = gain
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
||||||
|
s = self.gain
|
||||||
|
x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
|
||||||
|
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
||||||
|
return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
|
||||||
|
|
||||||
|
|
||||||
|
class Concat(nn.Module):
|
||||||
|
# Concatenate a list of tensors along dimension
|
||||||
|
def __init__(self, dimension=1):
|
||||||
|
super().__init__()
|
||||||
|
self.d = dimension
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.cat(x, self.d)
|
||||||
|
|
||||||
|
|
||||||
|
class AutoShape(nn.Module):
|
||||||
|
# YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
||||||
|
conf = 0.25 # NMS confidence threshold
|
||||||
|
iou = 0.45 # NMS IoU threshold
|
||||||
|
agnostic = False # NMS class-agnostic
|
||||||
|
multi_label = False # NMS multiple labels per box
|
||||||
|
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
||||||
|
max_det = 1000 # maximum number of detections per image
|
||||||
|
amp = False # Automatic Mixed Precision (AMP) inference
|
||||||
|
|
||||||
|
def __init__(self, model, verbose=True):
|
||||||
|
super().__init__()
|
||||||
|
if verbose:
|
||||||
|
LOGGER.info('Adding AutoShape... ')
|
||||||
|
copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
|
||||||
|
self.dmb = isinstance(model, AutoBackend) # DetectMultiBackend() instance
|
||||||
|
self.pt = not self.dmb or model.pt # PyTorch model
|
||||||
|
self.model = model.eval()
|
||||||
|
if self.pt:
|
||||||
|
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
||||||
|
m.inplace = False # Detect.inplace=False for safe multithread inference
|
||||||
|
m.export = True # do not output loss values
|
||||||
|
|
||||||
|
def _apply(self, fn):
|
||||||
|
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
||||||
|
self = super()._apply(fn)
|
||||||
|
if self.pt:
|
||||||
|
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
||||||
|
m.stride = fn(m.stride)
|
||||||
|
m.grid = list(map(fn, m.grid))
|
||||||
|
if isinstance(m.anchor_grid, list):
|
||||||
|
m.anchor_grid = list(map(fn, m.anchor_grid))
|
||||||
|
return self
|
||||||
|
|
||||||
|
@smart_inference_mode()
|
||||||
|
def forward(self, ims, size=640, augment=False, profile=False):
|
||||||
|
# Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
|
||||||
|
# file: ims = 'data/images/zidane.jpg' # str or PosixPath
|
||||||
|
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
||||||
|
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
||||||
|
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
||||||
|
# numpy: = np.zeros((640,1280,3)) # HWC
|
||||||
|
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
||||||
|
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
||||||
|
|
||||||
|
dt = (Profile(), Profile(), Profile())
|
||||||
|
with dt[0]:
|
||||||
|
if isinstance(size, int): # expand
|
||||||
|
size = (size, size)
|
||||||
|
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
|
||||||
|
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
|
||||||
|
if isinstance(ims, torch.Tensor): # torch
|
||||||
|
with amp.autocast(autocast):
|
||||||
|
return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
|
||||||
|
|
||||||
|
# Pre-process
|
||||||
|
n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
|
||||||
|
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
||||||
|
for i, im in enumerate(ims):
|
||||||
|
f = f'image{i}' # filename
|
||||||
|
if isinstance(im, (str, Path)): # filename or uri
|
||||||
|
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
||||||
|
im = np.asarray(ImageOps.exif_transpose(im))
|
||||||
|
elif isinstance(im, Image.Image): # PIL Image
|
||||||
|
im, f = np.asarray(ImageOps.exif_transpose(im)), getattr(im, 'filename', f) or f
|
||||||
|
files.append(Path(f).with_suffix('.jpg').name)
|
||||||
|
if im.shape[0] < 5: # image in CHW
|
||||||
|
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
||||||
|
im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
|
||||||
|
s = im.shape[:2] # HWC
|
||||||
|
shape0.append(s) # image shape
|
||||||
|
g = max(size) / max(s) # gain
|
||||||
|
shape1.append([y * g for y in s])
|
||||||
|
ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
||||||
|
shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] if self.pt else size # inf shape
|
||||||
|
x = [LetterBox(shape1, auto=False)(image=im)["img"] for im in ims] # pad
|
||||||
|
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
||||||
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
||||||
|
|
||||||
|
with amp.autocast(autocast):
|
||||||
|
# Inference
|
||||||
|
with dt[1]:
|
||||||
|
y = self.model(x, augment=augment) # forward
|
||||||
|
|
||||||
|
# Post-process
|
||||||
|
with dt[2]:
|
||||||
|
y = non_max_suppression(y if self.dmb else y[0],
|
||||||
|
self.conf,
|
||||||
|
self.iou,
|
||||||
|
self.classes,
|
||||||
|
self.agnostic,
|
||||||
|
self.multi_label,
|
||||||
|
max_det=self.max_det) # NMS
|
||||||
|
for i in range(n):
|
||||||
|
scale_boxes(shape1, y[i][:, :4], shape0[i])
|
||||||
|
|
||||||
|
return Detections(ims, y, files, dt, self.names, x.shape)
|
||||||
|
|
||||||
|
|
||||||
|
class Detections:
|
||||||
|
# YOLOv5 detections class for inference results
|
||||||
|
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
|
||||||
|
super().__init__()
|
||||||
|
d = pred[0].device # device
|
||||||
|
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
|
||||||
|
self.ims = ims # list of images as numpy arrays
|
||||||
|
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
||||||
|
self.names = names # class names
|
||||||
|
self.files = files # image filenames
|
||||||
|
self.times = times # profiling times
|
||||||
|
self.xyxy = pred # xyxy pixels
|
||||||
|
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
||||||
|
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
||||||
|
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
||||||
|
self.n = len(self.pred) # number of images (batch size)
|
||||||
|
self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms)
|
||||||
|
self.s = tuple(shape) # inference BCHW shape
|
||||||
|
|
||||||
|
def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
|
||||||
|
s, crops = '', []
|
||||||
|
for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
|
||||||
|
s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
||||||
|
if pred.shape[0]:
|
||||||
|
for c in pred[:, -1].unique():
|
||||||
|
n = (pred[:, -1] == c).sum() # detections per class
|
||||||
|
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
||||||
|
s = s.rstrip(', ')
|
||||||
|
if show or save or render or crop:
|
||||||
|
annotator = Annotator(im, example=str(self.names))
|
||||||
|
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
||||||
|
label = f'{self.names[int(cls)]} {conf:.2f}'
|
||||||
|
if crop:
|
||||||
|
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
|
||||||
|
crops.append({
|
||||||
|
'box': box,
|
||||||
|
'conf': conf,
|
||||||
|
'cls': cls,
|
||||||
|
'label': label,
|
||||||
|
'im': save_one_box(box, im, file=file, save=save)})
|
||||||
|
else: # all others
|
||||||
|
annotator.box_label(box, label if labels else '', color=colors(cls))
|
||||||
|
im = annotator.im
|
||||||
|
else:
|
||||||
|
s += '(no detections)'
|
||||||
|
|
||||||
|
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
||||||
|
if show:
|
||||||
|
im.show(self.files[i]) # show
|
||||||
|
if save:
|
||||||
|
f = self.files[i]
|
||||||
|
im.save(save_dir / f) # save
|
||||||
|
if i == self.n - 1:
|
||||||
|
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
||||||
|
if render:
|
||||||
|
self.ims[i] = np.asarray(im)
|
||||||
|
if pprint:
|
||||||
|
s = s.lstrip('\n')
|
||||||
|
return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
|
||||||
|
if crop:
|
||||||
|
if save:
|
||||||
|
LOGGER.info(f'Saved results to {save_dir}\n')
|
||||||
|
return crops
|
||||||
|
|
||||||
|
def show(self, labels=True):
|
||||||
|
self._run(show=True, labels=labels) # show results
|
||||||
|
|
||||||
|
def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
|
||||||
|
save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
|
||||||
|
self._run(save=True, labels=labels, save_dir=save_dir) # save results
|
||||||
|
|
||||||
|
def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
|
||||||
|
save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
|
||||||
|
return self._run(crop=True, save=save, save_dir=save_dir) # crop results
|
||||||
|
|
||||||
|
def render(self, labels=True):
|
||||||
|
self._run(render=True, labels=labels) # render results
|
||||||
|
return self.ims
|
||||||
|
|
||||||
|
def pandas(self):
|
||||||
|
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
||||||
|
new = copy(self) # return copy
|
||||||
|
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
||||||
|
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
||||||
|
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
||||||
|
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
||||||
|
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
||||||
|
return new
|
||||||
|
|
||||||
|
def tolist(self):
|
||||||
|
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
||||||
|
r = range(self.n) # iterable
|
||||||
|
x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
|
||||||
|
# for d in x:
|
||||||
|
# for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
||||||
|
# setattr(d, k, getattr(d, k)[0]) # pop out of list
|
||||||
|
return x
|
||||||
|
|
||||||
|
def print(self):
|
||||||
|
LOGGER.info(self.__str__())
|
||||||
|
|
||||||
|
def __len__(self): # override len(results)
|
||||||
|
return self.n
|
||||||
|
|
||||||
|
def __str__(self): # override print(results)
|
||||||
|
return self._run(pprint=True) # print results
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return f'YOLOv5 {self.__class__} instance\n' + self.__str__()
|
||||||
|
|
||||||
|
|
||||||
|
class Proto(nn.Module):
|
||||||
|
# YOLOv5 mask Proto module for segmentation models
|
||||||
|
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
|
||||||
|
super().__init__()
|
||||||
|
self.cv1 = Conv(c1, c_, k=3)
|
||||||
|
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
|
||||||
|
self.cv2 = Conv(c_, c_, k=3)
|
||||||
|
self.cv3 = Conv(c_, c2)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.cv3(self.cv2(self.upsample(self.cv1(x))))
|
||||||
|
|
||||||
|
|
||||||
|
class Ensemble(nn.ModuleList):
|
||||||
|
# Ensemble of models
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def forward(self, x, augment=False, profile=False, visualize=False):
|
||||||
|
y = [module(x, augment, profile, visualize)[0] for module in self]
|
||||||
|
# y = torch.stack(y).max(0)[0] # max ensemble
|
||||||
|
# y = torch.stack(y).mean(0) # mean ensemble
|
||||||
|
y = torch.cat(y, 1) # nms ensemble
|
||||||
|
return y, None # inference, train output
|
||||||
|
|
||||||
|
|
||||||
|
# heads
|
||||||
|
class Detect(nn.Module):
|
||||||
|
# YOLOv5 Detect head for detection models
|
||||||
|
stride = None # strides computed during build
|
||||||
|
dynamic = False # force grid reconstruction
|
||||||
|
export = False # export mode
|
||||||
|
|
||||||
|
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
|
||||||
|
super().__init__()
|
||||||
|
self.nc = nc # number of classes
|
||||||
|
self.no = nc + 5 # number of outputs per anchor
|
||||||
|
self.nl = len(anchors) # number of detection layers
|
||||||
|
self.na = len(anchors[0]) // 2 # number of anchors
|
||||||
|
self.grid = [torch.empty(0) for _ in range(self.nl)] # init grid
|
||||||
|
self.anchor_grid = [torch.empty(0) for _ in range(self.nl)] # init anchor grid
|
||||||
|
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
|
||||||
|
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
||||||
|
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
z = [] # inference output
|
||||||
|
for i in range(self.nl):
|
||||||
|
x[i] = self.m[i](x[i]) # conv
|
||||||
|
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
||||||
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||||
|
|
||||||
|
if not self.training: # inference
|
||||||
|
if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
||||||
|
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
|
||||||
|
|
||||||
|
if isinstance(self, Segment): # (boxes + masks)
|
||||||
|
xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
|
||||||
|
xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy
|
||||||
|
wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh
|
||||||
|
y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
|
||||||
|
else: # Detect (boxes only)
|
||||||
|
xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
|
||||||
|
xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
|
||||||
|
wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
|
||||||
|
y = torch.cat((xy, wh, conf), 4)
|
||||||
|
z.append(y.view(bs, self.na * nx * ny, self.no))
|
||||||
|
|
||||||
|
return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
|
||||||
|
|
||||||
|
def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):
|
||||||
|
d = self.anchors[i].device
|
||||||
|
t = self.anchors[i].dtype
|
||||||
|
shape = 1, self.na, ny, nx, 2 # grid shape
|
||||||
|
y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
|
||||||
|
yv, xv = torch.meshgrid(y, x, indexing='ij') if torch_1_10 else torch.meshgrid(y, x) # torch>=0.7 compatibility
|
||||||
|
grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5
|
||||||
|
anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
|
||||||
|
return grid, anchor_grid
|
||||||
|
|
||||||
|
|
||||||
|
class Segment(Detect):
|
||||||
|
# YOLOv5 Segment head for segmentation models
|
||||||
|
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True):
|
||||||
|
super().__init__(nc, anchors, ch, inplace)
|
||||||
|
self.nm = nm # number of masks
|
||||||
|
self.npr = npr # number of protos
|
||||||
|
self.no = 5 + nc + self.nm # number of outputs per anchor
|
||||||
|
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
||||||
|
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
||||||
|
self.detect = Detect.forward
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
p = self.proto(x[0])
|
||||||
|
x = self.detect(self, x)
|
||||||
|
return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])
|
||||||
|
|
||||||
|
|
||||||
|
class Classify(nn.Module):
|
||||||
|
# YOLOv5 classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
||||||
|
super().__init__()
|
||||||
|
c_ = 1280 # efficientnet_b0 size
|
||||||
|
self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
|
||||||
|
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
|
||||||
|
self.drop = nn.Dropout(p=0.0, inplace=True)
|
||||||
|
self.linear = nn.Linear(c_, c2) # to x(b,c2)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
if isinstance(x, list):
|
||||||
|
x = torch.cat(x, 1)
|
||||||
|
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
@ -0,0 +1,199 @@
|
|||||||
|
import time
|
||||||
|
from copy import deepcopy
|
||||||
|
|
||||||
|
import thop
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from ultralytics.yolo.utils import LOGGER
|
||||||
|
from ultralytics.yolo.utils.anchors import check_anchor_order
|
||||||
|
from ultralytics.yolo.utils.modeling import parse_model
|
||||||
|
from ultralytics.yolo.utils.modeling.modules import *
|
||||||
|
from ultralytics.yolo.utils.torch_utils import fuse_conv_and_bn, initialize_weights, model_info, scale_img, time_sync
|
||||||
|
|
||||||
|
|
||||||
|
class BaseModel(nn.Module):
|
||||||
|
# YOLOv5 base model
|
||||||
|
def forward(self, x, profile=False, visualize=False):
|
||||||
|
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
||||||
|
|
||||||
|
def _forward_once(self, x, profile=False, visualize=False):
|
||||||
|
y, dt = [], [] # outputs
|
||||||
|
for m in self.model:
|
||||||
|
if m.f != -1: # if not from previous layer
|
||||||
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||||||
|
if profile:
|
||||||
|
self._profile_one_layer(m, x, dt)
|
||||||
|
x = m(x) # run
|
||||||
|
y.append(x if m.i in self.save else None) # save output
|
||||||
|
if visualize:
|
||||||
|
pass
|
||||||
|
# TODO: feature_visualization(x, m.type, m.i, save_dir=visualize)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def _profile_one_layer(self, m, x, dt):
|
||||||
|
c = m == self.model[-1] # is final layer, copy input as inplace fix
|
||||||
|
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
||||||
|
t = time_sync()
|
||||||
|
for _ in range(10):
|
||||||
|
m(x.copy() if c else x)
|
||||||
|
dt.append((time_sync() - t) * 100)
|
||||||
|
if m == self.model[0]:
|
||||||
|
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
|
||||||
|
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
|
||||||
|
if c:
|
||||||
|
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
||||||
|
|
||||||
|
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
||||||
|
LOGGER.info('Fusing layers... ')
|
||||||
|
for m in self.model.modules():
|
||||||
|
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
|
||||||
|
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||||||
|
delattr(m, 'bn') # remove batchnorm
|
||||||
|
m.forward = m.forward_fuse # update forward
|
||||||
|
self.info()
|
||||||
|
return self
|
||||||
|
|
||||||
|
def info(self, verbose=False, img_size=640): # print model information
|
||||||
|
model_info(self, verbose, img_size)
|
||||||
|
|
||||||
|
def _apply(self, fn):
|
||||||
|
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
||||||
|
self = super()._apply(fn)
|
||||||
|
m = self.model[-1] # Detect()
|
||||||
|
if isinstance(m, (Detect, Segment)):
|
||||||
|
m.stride = fn(m.stride)
|
||||||
|
m.grid = list(map(fn, m.grid))
|
||||||
|
if isinstance(m.anchor_grid, list):
|
||||||
|
m.anchor_grid = list(map(fn, m.anchor_grid))
|
||||||
|
return self
|
||||||
|
|
||||||
|
|
||||||
|
class DetectionModel(BaseModel):
|
||||||
|
# YOLO detection model
|
||||||
|
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
||||||
|
super().__init__()
|
||||||
|
if isinstance(cfg, dict):
|
||||||
|
self.yaml = cfg # model dict
|
||||||
|
else: # is *.yaml
|
||||||
|
import yaml # for torch hub
|
||||||
|
self.yaml_file = Path(cfg).name
|
||||||
|
with open(cfg, encoding='ascii', errors='ignore') as f:
|
||||||
|
self.yaml = yaml.safe_load(f) # model dict
|
||||||
|
|
||||||
|
# Define model
|
||||||
|
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
||||||
|
if nc and nc != self.yaml['nc']:
|
||||||
|
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
||||||
|
self.yaml['nc'] = nc # override yaml value
|
||||||
|
if anchors:
|
||||||
|
LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
|
||||||
|
self.yaml['anchors'] = round(anchors) # override yaml value
|
||||||
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
||||||
|
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
||||||
|
self.inplace = self.yaml.get('inplace', True)
|
||||||
|
|
||||||
|
# Build strides, anchors
|
||||||
|
m = self.model[-1] # Detect()
|
||||||
|
if isinstance(m, (Detect, Segment)):
|
||||||
|
s = 256 # 2x min stride
|
||||||
|
m.inplace = self.inplace
|
||||||
|
forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
|
||||||
|
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
|
||||||
|
check_anchor_order(m)
|
||||||
|
m.anchors /= m.stride.view(-1, 1, 1)
|
||||||
|
self.stride = m.stride
|
||||||
|
self._initialize_biases() # only run once
|
||||||
|
|
||||||
|
# Init weights, biases
|
||||||
|
initialize_weights(self)
|
||||||
|
self.info()
|
||||||
|
LOGGER.info('')
|
||||||
|
|
||||||
|
def forward(self, x, augment=False, profile=False, visualize=False):
|
||||||
|
if augment:
|
||||||
|
return self._forward_augment(x) # augmented inference, None
|
||||||
|
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
||||||
|
|
||||||
|
def _forward_augment(self, x):
|
||||||
|
img_size = x.shape[-2:] # height, width
|
||||||
|
s = [1, 0.83, 0.67] # scales
|
||||||
|
f = [None, 3, None] # flips (2-ud, 3-lr)
|
||||||
|
y = [] # outputs
|
||||||
|
for si, fi in zip(s, f):
|
||||||
|
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
||||||
|
yi = self._forward_once(xi)[0] # forward
|
||||||
|
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
||||||
|
yi = self._descale_pred(yi, fi, si, img_size)
|
||||||
|
y.append(yi)
|
||||||
|
y = self._clip_augmented(y) # clip augmented tails
|
||||||
|
return torch.cat(y, 1), None # augmented inference, train
|
||||||
|
|
||||||
|
def _descale_pred(self, p, flips, scale, img_size):
|
||||||
|
# de-scale predictions following augmented inference (inverse operation)
|
||||||
|
if self.inplace:
|
||||||
|
p[..., :4] /= scale # de-scale
|
||||||
|
if flips == 2:
|
||||||
|
p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
|
||||||
|
elif flips == 3:
|
||||||
|
p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
|
||||||
|
else:
|
||||||
|
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
|
||||||
|
if flips == 2:
|
||||||
|
y = img_size[0] - y # de-flip ud
|
||||||
|
elif flips == 3:
|
||||||
|
x = img_size[1] - x # de-flip lr
|
||||||
|
p = torch.cat((x, y, wh, p[..., 4:]), -1)
|
||||||
|
return p
|
||||||
|
|
||||||
|
def _clip_augmented(self, y):
|
||||||
|
# Clip YOLOv5 augmented inference tails
|
||||||
|
nl = self.model[-1].nl # number of detection layers (P3-P5)
|
||||||
|
g = sum(4 ** x for x in range(nl)) # grid points
|
||||||
|
e = 1 # exclude layer count
|
||||||
|
i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
|
||||||
|
y[0] = y[0][:, :-i] # large
|
||||||
|
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
|
||||||
|
y[-1] = y[-1][:, i:] # small
|
||||||
|
return y
|
||||||
|
|
||||||
|
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
||||||
|
# https://arxiv.org/abs/1708.02002 section 3.3
|
||||||
|
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
||||||
|
m = self.model[-1] # Detect() module
|
||||||
|
for mi, s in zip(m.m, m.stride): # from
|
||||||
|
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
||||||
|
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
||||||
|
b.data[:, 5:5 + m.nc] += math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum()) # cls
|
||||||
|
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
||||||
|
|
||||||
|
|
||||||
|
class SegmentationModel(DetectionModel):
|
||||||
|
# YOLOv5 segmentation model
|
||||||
|
def __init__(self, cfg='yolov5s-seg.yaml', ch=3, nc=None, anchors=None):
|
||||||
|
super().__init__(cfg, ch, nc, anchors)
|
||||||
|
|
||||||
|
|
||||||
|
class ClassificationModel(BaseModel):
|
||||||
|
# YOLOv5 classification model
|
||||||
|
def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index
|
||||||
|
super().__init__()
|
||||||
|
self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
|
||||||
|
|
||||||
|
def _from_detection_model(self, model, nc=1000, cutoff=10):
|
||||||
|
# Create a YOLOv5 classification model from a YOLOv5 detection model
|
||||||
|
if isinstance(model, AutoBackend):
|
||||||
|
model = model.model # unwrap DetectMultiBackend
|
||||||
|
model.model = model.model[:cutoff] # backbone
|
||||||
|
m = model.model[-1] # last layer
|
||||||
|
ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module
|
||||||
|
c = Classify(ch, nc) # Classify()
|
||||||
|
c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type
|
||||||
|
model.model[-1] = c # replace
|
||||||
|
self.model = model.model
|
||||||
|
self.stride = model.stride
|
||||||
|
self.save = []
|
||||||
|
self.nc = nc
|
||||||
|
|
||||||
|
def _from_yaml(self, cfg):
|
||||||
|
# Create a YOLOv5 classification model from a *.yaml file
|
||||||
|
self.model = None
|
@ -0,0 +1,306 @@
|
|||||||
|
import contextlib
|
||||||
|
import math
|
||||||
|
import time
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torchvision
|
||||||
|
|
||||||
|
from ultralytics.yolo.utils import LOGGER
|
||||||
|
|
||||||
|
from .metrics import box_iou
|
||||||
|
|
||||||
|
|
||||||
|
class Profile(contextlib.ContextDecorator):
|
||||||
|
# YOLOv5 Profile class. Usage: @Profile() decorator or 'with Profile():' context manager
|
||||||
|
def __init__(self, t=0.0):
|
||||||
|
self.t = t
|
||||||
|
self.cuda = torch.cuda.is_available()
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
self.start = self.time()
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __exit__(self, type, value, traceback):
|
||||||
|
self.dt = self.time() - self.start # delta-time
|
||||||
|
self.t += self.dt # accumulate dt
|
||||||
|
|
||||||
|
def time(self):
|
||||||
|
if self.cuda:
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
return time.time()
|
||||||
|
|
||||||
|
|
||||||
|
def segment2box(segment, width=640, height=640):
|
||||||
|
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
||||||
|
x, y = segment.T # segment xy
|
||||||
|
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
||||||
|
x, y, = (
|
||||||
|
x[inside],
|
||||||
|
y[inside],
|
||||||
|
)
|
||||||
|
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros(4) # xyxy
|
||||||
|
|
||||||
|
|
||||||
|
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
|
||||||
|
# Rescale boxes (xyxy) from img1_shape to img0_shape
|
||||||
|
if ratio_pad is None: # calculate from img0_shape
|
||||||
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
||||||
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
||||||
|
else:
|
||||||
|
gain = ratio_pad[0][0]
|
||||||
|
pad = ratio_pad[1]
|
||||||
|
|
||||||
|
boxes[:, [0, 2]] -= pad[0] # x padding
|
||||||
|
boxes[:, [1, 3]] -= pad[1] # y padding
|
||||||
|
boxes[:, :4] /= gain
|
||||||
|
clip_boxes(boxes, img0_shape)
|
||||||
|
return boxes
|
||||||
|
|
||||||
|
|
||||||
|
def clip_boxes(boxes, shape):
|
||||||
|
# Clip boxes (xyxy) to image shape (height, width)
|
||||||
|
if isinstance(boxes, torch.Tensor): # faster individually
|
||||||
|
boxes[:, 0].clamp_(0, shape[1]) # x1
|
||||||
|
boxes[:, 1].clamp_(0, shape[0]) # y1
|
||||||
|
boxes[:, 2].clamp_(0, shape[1]) # x2
|
||||||
|
boxes[:, 3].clamp_(0, shape[0]) # y2
|
||||||
|
else: # np.array (faster grouped)
|
||||||
|
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
|
||||||
|
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
|
||||||
|
|
||||||
|
|
||||||
|
def make_divisible(x, divisor):
|
||||||
|
# Returns nearest x divisible by divisor
|
||||||
|
if isinstance(divisor, torch.Tensor):
|
||||||
|
divisor = int(divisor.max()) # to int
|
||||||
|
return math.ceil(x / divisor) * divisor
|
||||||
|
|
||||||
|
|
||||||
|
def non_max_suppression(
|
||||||
|
prediction,
|
||||||
|
conf_thres=0.25,
|
||||||
|
iou_thres=0.45,
|
||||||
|
classes=None,
|
||||||
|
agnostic=False,
|
||||||
|
multi_label=False,
|
||||||
|
labels=(),
|
||||||
|
max_det=300,
|
||||||
|
nm=0, # number of masks
|
||||||
|
):
|
||||||
|
"""Non-Maximum Suppression (NMS) on inference results to reject overlapping detections
|
||||||
|
Returns:
|
||||||
|
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
||||||
|
"""
|
||||||
|
|
||||||
|
if isinstance(prediction, (list, tuple)): # YOLOv5 model in validation model, output = (inference_out, loss_out)
|
||||||
|
prediction = prediction[0] # select only inference output
|
||||||
|
|
||||||
|
device = prediction.device
|
||||||
|
mps = 'mps' in device.type # Apple MPS
|
||||||
|
if mps: # MPS not fully supported yet, convert tensors to CPU before NMS
|
||||||
|
prediction = prediction.cpu()
|
||||||
|
bs = prediction.shape[0] # batch size
|
||||||
|
nc = prediction.shape[2] - nm - 5 # number of classes
|
||||||
|
xc = prediction[..., 4] > conf_thres # candidates
|
||||||
|
|
||||||
|
# Checks
|
||||||
|
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
|
||||||
|
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
|
||||||
|
|
||||||
|
# Settings
|
||||||
|
# min_wh = 2 # (pixels) minimum box width and height
|
||||||
|
max_wh = 7680 # (pixels) maximum box width and height
|
||||||
|
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
||||||
|
time_limit = 0.5 + 0.05 * bs # seconds to quit after
|
||||||
|
redundant = True # require redundant detections
|
||||||
|
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
||||||
|
merge = False # use merge-NMS
|
||||||
|
|
||||||
|
t = time.time()
|
||||||
|
mi = 5 + nc # mask start index
|
||||||
|
output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
|
||||||
|
for xi, x in enumerate(prediction): # image index, image inference
|
||||||
|
# Apply constraints
|
||||||
|
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
||||||
|
x = x[xc[xi]] # confidence
|
||||||
|
|
||||||
|
# Cat apriori labels if autolabelling
|
||||||
|
if labels and len(labels[xi]):
|
||||||
|
lb = labels[xi]
|
||||||
|
v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
|
||||||
|
v[:, :4] = lb[:, 1:5] # box
|
||||||
|
v[:, 4] = 1.0 # conf
|
||||||
|
v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls
|
||||||
|
x = torch.cat((x, v), 0)
|
||||||
|
|
||||||
|
# If none remain process next image
|
||||||
|
if not x.shape[0]:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Compute conf
|
||||||
|
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
||||||
|
|
||||||
|
# Box/Mask
|
||||||
|
box = xywh2xyxy(x[:, :4]) # center_x, center_y, width, height) to (x1, y1, x2, y2)
|
||||||
|
mask = x[:, mi:] # zero columns if no masks
|
||||||
|
|
||||||
|
# Detections matrix nx6 (xyxy, conf, cls)
|
||||||
|
if multi_label:
|
||||||
|
i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).T
|
||||||
|
x = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1)
|
||||||
|
else: # best class only
|
||||||
|
conf, j = x[:, 5:mi].max(1, keepdim=True)
|
||||||
|
x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
|
||||||
|
|
||||||
|
# Filter by class
|
||||||
|
if classes is not None:
|
||||||
|
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
||||||
|
|
||||||
|
# Apply finite constraint
|
||||||
|
# if not torch.isfinite(x).all():
|
||||||
|
# x = x[torch.isfinite(x).all(1)]
|
||||||
|
|
||||||
|
# Check shape
|
||||||
|
n = x.shape[0] # number of boxes
|
||||||
|
if not n: # no boxes
|
||||||
|
continue
|
||||||
|
elif n > max_nms: # excess boxes
|
||||||
|
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
||||||
|
else:
|
||||||
|
x = x[x[:, 4].argsort(descending=True)] # sort by confidence
|
||||||
|
|
||||||
|
# Batched NMS
|
||||||
|
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
||||||
|
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
||||||
|
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
||||||
|
if i.shape[0] > max_det: # limit detections
|
||||||
|
i = i[:max_det]
|
||||||
|
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
||||||
|
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
||||||
|
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
||||||
|
weights = iou * scores[None] # box weights
|
||||||
|
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
||||||
|
if redundant:
|
||||||
|
i = i[iou.sum(1) > 1] # require redundancy
|
||||||
|
|
||||||
|
output[xi] = x[i]
|
||||||
|
if mps:
|
||||||
|
output[xi] = output[xi].to(device)
|
||||||
|
if (time.time() - t) > time_limit:
|
||||||
|
LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
|
||||||
|
break # time limit exceeded
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def clip_coords(boxes, shape):
|
||||||
|
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
||||||
|
if isinstance(boxes, torch.Tensor): # faster individually
|
||||||
|
boxes[:, 0].clamp_(0, shape[1]) # x1
|
||||||
|
boxes[:, 1].clamp_(0, shape[0]) # y1
|
||||||
|
boxes[:, 2].clamp_(0, shape[1]) # x2
|
||||||
|
boxes[:, 3].clamp_(0, shape[0]) # y2
|
||||||
|
else: # np.array (faster grouped)
|
||||||
|
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
|
||||||
|
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
|
||||||
|
|
||||||
|
|
||||||
|
def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
|
||||||
|
"""
|
||||||
|
img1_shape: model input shape, [h, w]
|
||||||
|
img0_shape: origin pic shape, [h, w, 3]
|
||||||
|
masks: [h, w, num]
|
||||||
|
"""
|
||||||
|
# Rescale coordinates (xyxy) from im1_shape to im0_shape
|
||||||
|
if ratio_pad is None: # calculate from im0_shape
|
||||||
|
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
|
||||||
|
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
|
||||||
|
else:
|
||||||
|
pad = ratio_pad[1]
|
||||||
|
top, left = int(pad[1]), int(pad[0]) # y, x
|
||||||
|
bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
|
||||||
|
|
||||||
|
if len(masks.shape) < 2:
|
||||||
|
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
|
||||||
|
masks = masks[top:bottom, left:right]
|
||||||
|
# masks = masks.permute(2, 0, 1).contiguous()
|
||||||
|
# masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
|
||||||
|
# masks = masks.permute(1, 2, 0).contiguous()
|
||||||
|
masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
|
||||||
|
|
||||||
|
if len(masks.shape) == 2:
|
||||||
|
masks = masks[:, :, None]
|
||||||
|
return masks
|
||||||
|
|
||||||
|
|
||||||
|
def xyxy2xywh(x):
|
||||||
|
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
||||||
|
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
||||||
|
y[:, 2] = x[:, 2] - x[:, 0] # width
|
||||||
|
y[:, 3] = x[:, 3] - x[:, 1] # height
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def xywh2xyxy(x):
|
||||||
|
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
||||||
|
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
||||||
|
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
||||||
|
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def xywh2ltwh(x):
|
||||||
|
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, w, h] where xy1=top-left
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
||||||
|
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def xyxy2ltwh(x):
|
||||||
|
# Convert nx4 boxes from [x1, y1, x2, y2] to [x1, y1, w, h] where xy1=top-left, xy2=bottom-right
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 2] = x[:, 2] - x[:, 0] # width
|
||||||
|
y[:, 3] = x[:, 3] - x[:, 1] # height
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def ltwh2xywh(x):
|
||||||
|
# Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 0] = x[:, 0] + x[:, 2] / 2 # center x
|
||||||
|
y[:, 1] = x[:, 1] + x[:, 3] / 2 # center y
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def ltwh2xyxy(x):
|
||||||
|
# Convert nx4 boxes from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 2] = x[:, 2] + x[:, 0] # width
|
||||||
|
y[:, 3] = x[:, 3] + x[:, 1] # height
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def segments2boxes(segments):
|
||||||
|
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
|
||||||
|
boxes = []
|
||||||
|
for s in segments:
|
||||||
|
x, y = s.T # segment xy
|
||||||
|
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
|
||||||
|
return xyxy2xywh(np.array(boxes)) # cls, xywh
|
||||||
|
|
||||||
|
|
||||||
|
def resample_segments(segments, n=1000):
|
||||||
|
# Up-sample an (n,2) segment
|
||||||
|
for i, s in enumerate(segments):
|
||||||
|
s = np.concatenate((s, s[0:1, :]), axis=0)
|
||||||
|
x = np.linspace(0, len(s) - 1, n)
|
||||||
|
xp = np.arange(len(s))
|
||||||
|
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
|
||||||
|
return segments
|
@ -0,0 +1,181 @@
|
|||||||
|
from pathlib import Path
|
||||||
|
from urllib.error import URLError
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from PIL import Image, ImageDraw, ImageFont
|
||||||
|
|
||||||
|
from ultralytics.yolo.utils import CONFIG_DIR, FONT
|
||||||
|
|
||||||
|
from .checks import check_font, check_requirements, is_ascii
|
||||||
|
from .files import increment_path
|
||||||
|
from .ops import clip_coords, scale_image, xywh2xyxy, xyxy2xywh
|
||||||
|
|
||||||
|
|
||||||
|
class Colors:
|
||||||
|
# Ultralytics color palette https://ultralytics.com/
|
||||||
|
def __init__(self):
|
||||||
|
# hex = matplotlib.colors.TABLEAU_COLORS.values()
|
||||||
|
hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
|
||||||
|
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
|
||||||
|
self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
|
||||||
|
self.n = len(self.palette)
|
||||||
|
|
||||||
|
def __call__(self, i, bgr=False):
|
||||||
|
c = self.palette[int(i) % self.n]
|
||||||
|
return (c[2], c[1], c[0]) if bgr else c
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def hex2rgb(h): # rgb order (PIL)
|
||||||
|
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
|
||||||
|
|
||||||
|
|
||||||
|
colors = Colors() # create instance for 'from utils.plots import colors'
|
||||||
|
|
||||||
|
|
||||||
|
class Annotator:
|
||||||
|
# YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
|
||||||
|
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
|
||||||
|
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
|
||||||
|
non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
|
||||||
|
self.pil = pil or non_ascii
|
||||||
|
if self.pil: # use PIL
|
||||||
|
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
|
||||||
|
self.draw = ImageDraw.Draw(self.im)
|
||||||
|
self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font,
|
||||||
|
size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
|
||||||
|
else: # use cv2
|
||||||
|
self.im = im
|
||||||
|
self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
|
||||||
|
|
||||||
|
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
|
||||||
|
# Add one xyxy box to image with label
|
||||||
|
if self.pil or not is_ascii(label):
|
||||||
|
self.draw.rectangle(box, width=self.lw, outline=color) # box
|
||||||
|
if label:
|
||||||
|
w, h = self.font.getsize(label) # text width, height
|
||||||
|
outside = box[1] - h >= 0 # label fits outside box
|
||||||
|
self.draw.rectangle(
|
||||||
|
(box[0], box[1] - h if outside else box[1], box[0] + w + 1,
|
||||||
|
box[1] + 1 if outside else box[1] + h + 1),
|
||||||
|
fill=color,
|
||||||
|
)
|
||||||
|
# self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
|
||||||
|
self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
|
||||||
|
else: # cv2
|
||||||
|
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
|
||||||
|
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
|
||||||
|
if label:
|
||||||
|
tf = max(self.lw - 1, 1) # font thickness
|
||||||
|
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
|
||||||
|
outside = p1[1] - h >= 3
|
||||||
|
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
|
||||||
|
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
|
||||||
|
cv2.putText(self.im,
|
||||||
|
label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
|
||||||
|
0,
|
||||||
|
self.lw / 3,
|
||||||
|
txt_color,
|
||||||
|
thickness=tf,
|
||||||
|
lineType=cv2.LINE_AA)
|
||||||
|
|
||||||
|
def masks(self, masks, colors, im_gpu=None, alpha=0.5):
|
||||||
|
"""Plot masks at once.
|
||||||
|
Args:
|
||||||
|
masks (tensor): predicted masks on cuda, shape: [n, h, w]
|
||||||
|
colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n]
|
||||||
|
im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1]
|
||||||
|
alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque
|
||||||
|
"""
|
||||||
|
if self.pil:
|
||||||
|
# convert to numpy first
|
||||||
|
self.im = np.asarray(self.im).copy()
|
||||||
|
if im_gpu is None:
|
||||||
|
# Add multiple masks of shape(h,w,n) with colors list([r,g,b], [r,g,b], ...)
|
||||||
|
if len(masks) == 0:
|
||||||
|
return
|
||||||
|
if isinstance(masks, torch.Tensor):
|
||||||
|
masks = torch.as_tensor(masks, dtype=torch.uint8)
|
||||||
|
masks = masks.permute(1, 2, 0).contiguous()
|
||||||
|
masks = masks.cpu().numpy()
|
||||||
|
# masks = np.ascontiguousarray(masks.transpose(1, 2, 0))
|
||||||
|
masks = scale_image(masks.shape[:2], masks, self.im.shape)
|
||||||
|
masks = np.asarray(masks, dtype=np.float32)
|
||||||
|
colors = np.asarray(colors, dtype=np.float32) # shape(n,3)
|
||||||
|
s = masks.sum(2, keepdims=True).clip(0, 1) # add all masks together
|
||||||
|
masks = (masks @ colors).clip(0, 255) # (h,w,n) @ (n,3) = (h,w,3)
|
||||||
|
self.im[:] = masks * alpha + self.im * (1 - s * alpha)
|
||||||
|
else:
|
||||||
|
if len(masks) == 0:
|
||||||
|
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
|
||||||
|
colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
|
||||||
|
colors = colors[:, None, None] # shape(n,1,1,3)
|
||||||
|
masks = masks.unsqueeze(3) # shape(n,h,w,1)
|
||||||
|
masks_color = masks * (colors * alpha) # shape(n,h,w,3)
|
||||||
|
|
||||||
|
inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
|
||||||
|
mcs = (masks_color * inv_alph_masks).sum(0) * 2 # mask color summand shape(n,h,w,3)
|
||||||
|
|
||||||
|
im_gpu = im_gpu.flip(dims=[0]) # flip channel
|
||||||
|
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
|
||||||
|
im_gpu = im_gpu * inv_alph_masks[-1] + mcs
|
||||||
|
im_mask = (im_gpu * 255).byte().cpu().numpy()
|
||||||
|
self.im[:] = scale_image(im_gpu.shape, im_mask, self.im.shape)
|
||||||
|
if self.pil:
|
||||||
|
# convert im back to PIL and update draw
|
||||||
|
self.fromarray(self.im)
|
||||||
|
|
||||||
|
def rectangle(self, xy, fill=None, outline=None, width=1):
|
||||||
|
# Add rectangle to image (PIL-only)
|
||||||
|
self.draw.rectangle(xy, fill, outline, width)
|
||||||
|
|
||||||
|
def text(self, xy, text, txt_color=(255, 255, 255), anchor='top'):
|
||||||
|
# Add text to image (PIL-only)
|
||||||
|
if anchor == 'bottom': # start y from font bottom
|
||||||
|
w, h = self.font.getsize(text) # text width, height
|
||||||
|
xy[1] += 1 - h
|
||||||
|
self.draw.text(xy, text, fill=txt_color, font=self.font)
|
||||||
|
|
||||||
|
def fromarray(self, im):
|
||||||
|
# Update self.im from a numpy array
|
||||||
|
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
|
||||||
|
self.draw = ImageDraw.Draw(self.im)
|
||||||
|
|
||||||
|
def result(self):
|
||||||
|
# Return annotated image as array
|
||||||
|
return np.asarray(self.im)
|
||||||
|
|
||||||
|
|
||||||
|
def check_pil_font(font=FONT, size=10):
|
||||||
|
# Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary
|
||||||
|
font = Path(font)
|
||||||
|
font = font if font.exists() else (CONFIG_DIR / font.name)
|
||||||
|
try:
|
||||||
|
return ImageFont.truetype(str(font) if font.exists() else font.name, size)
|
||||||
|
except Exception: # download if missing
|
||||||
|
try:
|
||||||
|
check_font(font)
|
||||||
|
return ImageFont.truetype(str(font), size)
|
||||||
|
except TypeError:
|
||||||
|
check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374
|
||||||
|
except URLError: # not online
|
||||||
|
return ImageFont.load_default()
|
||||||
|
|
||||||
|
|
||||||
|
def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
|
||||||
|
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
|
||||||
|
xyxy = torch.tensor(xyxy).view(-1, 4)
|
||||||
|
b = xyxy2xywh(xyxy) # boxes
|
||||||
|
if square:
|
||||||
|
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
|
||||||
|
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
|
||||||
|
xyxy = xywh2xyxy(b).long()
|
||||||
|
clip_coords(xyxy, im.shape)
|
||||||
|
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
|
||||||
|
if save:
|
||||||
|
file.parent.mkdir(parents=True, exist_ok=True) # make directory
|
||||||
|
f = str(increment_path(file).with_suffix('.jpg'))
|
||||||
|
# cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
|
||||||
|
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
|
||||||
|
return crop
|
Loading…
Reference in new issue