add a naive DDP for model interface (#78)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
single_channel
Laughing 2 years ago committed by GitHub
parent 48c95ba083
commit 7690cae2fc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -3,6 +3,8 @@ Simple training loop; Boilerplate that could apply to any arbitrary neural netwo
"""
import os
import subprocess
import sys
import time
from collections import defaultdict
from copy import deepcopy
@ -26,6 +28,7 @@ from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.utils import LOGGER, ROOT, TQDM_BAR_FORMAT, colorstr
from ultralytics.yolo.utils.checks import check_file, print_args
from ultralytics.yolo.utils.configs import get_config
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command
from ultralytics.yolo.utils.files import get_latest_run, increment_path, save_yaml
from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, init_seeds, one_cycle, strip_optimizer
@ -103,15 +106,16 @@ class BaseTrainer:
def train(self):
world_size = torch.cuda.device_count()
if world_size > 1:
mp.spawn(self._do_train, args=(world_size,), nprocs=world_size, join=True)
if world_size > 1 and not ("LOCAL_RANK" in os.environ):
command = generate_ddp_command(world_size, self)
subprocess.Popen(command)
ddp_cleanup(command, self)
else:
# self._do_train(int(os.getenv("RANK", -1)), world_size)
self._do_train()
self._do_train(int(os.getenv("RANK", -1)), world_size)
def _setup_ddp(self, rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '9020'
# os.environ['MASTER_ADDR'] = 'localhost'
# os.environ['MASTER_PORT'] = '9020'
torch.cuda.set_device(rank)
self.device = torch.device('cuda', rank)
self.console.info(f"RANK - WORLD_SIZE - DEVICE: {rank} - {world_size} - {self.device} ")
@ -146,7 +150,7 @@ class BaseTrainer:
self.scheduler.last_epoch = self.start_epoch - 1 # do not move
# dataloaders
batch_size = self.batch_size // world_size
batch_size = self.batch_size // world_size if world_size > 1 else self.batch_size
self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=rank, mode="train")
if rank in {0, -1}:
self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode="val")
@ -258,7 +262,7 @@ class BaseTrainer:
self.plot_metrics()
self.log(f"\nTraining complete ({(time.time() - self.train_time_start) / 3600:.3f} hours)")
self.trigger_callbacks('on_train_end')
dist.destroy_process_group() if world_size != 1 else None
dist.destroy_process_group() if world_size > 1 else None
torch.cuda.empty_cache()
def save_model(self):

@ -0,0 +1,63 @@
import os
import shutil
import socket
import sys
import tempfile
import time
def find_free_network_port() -> int:
# https://github.com/Lightning-AI/lightning/blob/master/src/lightning_lite/plugins/environments/lightning.py
"""Finds a free port on localhost.
It is useful in single-node training when we don't want to connect to a real main node but have to set the
`MASTER_PORT` environment variable.
"""
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(("", 0))
port = s.getsockname()[1]
s.close()
return port
def generate_ddp_file(trainer):
import_path = '.'.join(str(trainer.__class__).split(".")[1:-1])
# remove the save_dir
shutil.rmtree(trainer.save_dir)
content = f'''overrides = {dict(trainer.args)} \nif __name__ == "__main__":
from ultralytics.{import_path} import {trainer.__class__.__name__}
trainer = {trainer.__class__.__name__}(overrides=overrides)
trainer.train()'''
with tempfile.NamedTemporaryFile(prefix="_temp_",
suffix=f"{id(trainer)}.py",
mode="w+",
encoding='utf-8',
dir=os.path.curdir,
delete=False) as file:
file.write(content)
return file.name
def generate_ddp_command(world_size, trainer):
import __main__ # local import to avoid https://github.com/Lightning-AI/lightning/issues/15218
file_name = os.path.abspath(sys.argv[0])
using_cli = not file_name.endswith(".py")
if using_cli:
file_name = generate_ddp_file(trainer)
return [
sys.executable, "-m", "torch.distributed.launch", "--nproc_per_node", f"{world_size}", "--master_port",
f"{find_free_network_port()}", file_name] + sys.argv[1:]
def ddp_cleanup(command, trainer):
# delete temp file if created
# TODO: this is a temp solution in case the file is deleted before DDP launching
time.sleep(5)
tempfile_suffix = str(id(trainer)) + ".py"
if tempfile_suffix in "".join(command):
for chunk in command:
if tempfile_suffix in chunk:
os.remove(chunk)
break

@ -25,11 +25,8 @@ class DetectionValidator(BaseValidator):
self.class_map = None
self.targets = None
self.metrics = DetMetrics(save_dir=self.save_dir, plot=self.args.plots)
self.iouv = torch.linspace(0.5, 0.95, 10, device=self.device) # iou vector for mAP@0.5:0.95
self.iouv = torch.linspace(0.5, 0.95, 10) # iou vector for mAP@0.5:0.95
self.niou = self.iouv.numel()
self.seen = 0
self.jdict = []
self.stats = []
def preprocess(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True)
@ -56,6 +53,9 @@ class DetectionValidator(BaseValidator):
self.names = dict(enumerate(self.names))
self.metrics.names = self.names
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
self.seen = 0
self.jdict = []
self.stats = []
def get_desc(self):
return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)")
@ -98,7 +98,7 @@ class DetectionValidator(BaseValidator):
tbox = ops.xywh2xyxy(labels[:, 1:5]) # target boxes
ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
correct_bboxes = self._process_batch(predn, labelsn, self.iouv)
correct_bboxes = self._process_batch(predn, labelsn)
# TODO: maybe remove these `self.` arguments as they already are member variable
if self.args.plots:
self.confusion_matrix.process_batch(predn, labelsn)
@ -139,7 +139,7 @@ class DetectionValidator(BaseValidator):
if self.args.plots:
self.confusion_matrix.plot(save_dir=self.save_dir, names=list(self.names.values()))
def _process_batch(self, detections, labels, iouv):
def _process_batch(self, detections, labels):
"""
Return correct prediction matrix
Arguments:
@ -149,10 +149,10 @@ class DetectionValidator(BaseValidator):
correct (array[N, 10]), for 10 IoU levels
"""
iou = box_iou(labels[:, 1:], detections[:, :4])
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool)
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(iouv)):
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
for i in range(len(self.iouv)):
x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
1).cpu().numpy() # [label, detect, iou]
@ -162,7 +162,7 @@ class DetectionValidator(BaseValidator):
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
def get_dataloader(self, dataset_path, batch_size):
# TODO: manage splits differently

@ -5,13 +5,11 @@ import numpy as np
import torch
import torch.nn.functional as F
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.checks import check_requirements
from ultralytics.yolo.utils.metrics import ConfusionMatrix, SegmentMetrics, box_iou, mask_iou
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
from ultralytics.yolo.utils.torch_utils import de_parallel
from ..detect import DetectionValidator
@ -55,6 +53,9 @@ class SegmentationValidator(DetectionValidator):
self.metrics.names = self.names
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
self.plot_masks = []
self.seen = 0
self.jdict = []
self.stats = []
def get_desc(self):
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)", "Mask(P",
@ -106,11 +107,10 @@ class SegmentationValidator(DetectionValidator):
tbox = ops.xywh2xyxy(labels[:, 1:5]) # target boxes
ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
correct_bboxes = self._process_batch(predn, labelsn, self.iouv)
correct_bboxes = self._process_batch(predn, labelsn)
# TODO: maybe remove these `self.` arguments as they already are member variable
correct_masks = self._process_batch(predn,
labelsn,
self.iouv,
pred_masks,
gt_masks,
overlap=self.args.overlap_mask,
@ -135,7 +135,7 @@ class SegmentationValidator(DetectionValidator):
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
'''
def _process_batch(self, detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
def _process_batch(self, detections, labels, pred_masks=None, gt_masks=None, overlap=False, masks=False):
"""
Return correct prediction matrix
Arguments:
@ -157,10 +157,10 @@ class SegmentationValidator(DetectionValidator):
else: # boxes
iou = box_iou(labels[:, 1:], detections[:, :4])
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool)
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(iouv)):
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
for i in range(len(self.iouv)):
x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
1).cpu().numpy() # [label, detect, iou]
@ -170,7 +170,7 @@ class SegmentationValidator(DetectionValidator):
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
# TODO: probably add this to class Metrics
@property

Loading…
Cancel
Save