ultralytics 8.0.48
Edge TPU fix and Metrics updates (#1171)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: majid nasiri <majnasai@gmail.com>
This commit is contained in:
@ -243,6 +243,24 @@ def is_docker() -> bool:
|
||||
return False
|
||||
|
||||
|
||||
def is_online() -> bool:
|
||||
"""
|
||||
Check internet connectivity by attempting to connect to a known online host.
|
||||
|
||||
Returns:
|
||||
bool: True if connection is successful, False otherwise.
|
||||
"""
|
||||
import socket
|
||||
with contextlib.suppress(Exception):
|
||||
host = socket.gethostbyname('www.github.com')
|
||||
socket.create_connection((host, 80), timeout=2)
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
ONLINE = is_online()
|
||||
|
||||
|
||||
def is_pip_package(filepath: str = __name__) -> bool:
|
||||
"""
|
||||
Determines if the file at the given filepath is part of a pip package.
|
||||
@ -513,6 +531,7 @@ def set_sentry():
|
||||
RANK in {-1, 0} and \
|
||||
Path(sys.argv[0]).name == 'yolo' and \
|
||||
not TESTS_RUNNING and \
|
||||
ONLINE and \
|
||||
((is_pip_package() and not is_git_dir()) or
|
||||
(get_git_origin_url() == 'https://github.com/ultralytics/ultralytics.git' and get_git_branch() == 'main')):
|
||||
|
||||
|
@ -151,4 +151,5 @@ def add_integration_callbacks(instance):
|
||||
|
||||
for x in clearml_callbacks, comet_callbacks, hub_callbacks, tb_callbacks:
|
||||
for k, v in x.items():
|
||||
instance.callbacks[k].append(v) # callback[name].append(func)
|
||||
if v not in instance.callbacks[k]: # prevent duplicate callbacks addition
|
||||
instance.callbacks[k].append(v) # callback[name].append(func)
|
||||
|
@ -4,24 +4,33 @@ import json
|
||||
from time import time
|
||||
|
||||
from ultralytics.hub.utils import PREFIX, traces
|
||||
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
|
||||
from ultralytics.yolo.utils import LOGGER
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
|
||||
|
||||
def on_pretrain_routine_end(trainer):
|
||||
session = not TESTS_RUNNING and getattr(trainer, 'hub_session', None)
|
||||
session = getattr(trainer, 'hub_session', None)
|
||||
if session:
|
||||
# Start timer for upload rate limit
|
||||
LOGGER.info(f'{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀')
|
||||
session.t = {'metrics': time(), 'ckpt': time()} # start timer on self.rate_limit
|
||||
session.timers = {'metrics': time(), 'ckpt': time()} # start timer on session.rate_limit
|
||||
|
||||
|
||||
def on_fit_epoch_end(trainer):
|
||||
session = getattr(trainer, 'hub_session', None)
|
||||
if session:
|
||||
session.metrics_queue[trainer.epoch] = json.dumps(trainer.metrics) # json string
|
||||
if time() - session.t['metrics'] > session.rate_limits['metrics']:
|
||||
# Upload metrics after val end
|
||||
all_plots = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics}
|
||||
if trainer.epoch == 0:
|
||||
model_info = {
|
||||
'model/parameters': get_num_params(trainer.model),
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||
all_plots = {**all_plots, **model_info}
|
||||
session.metrics_queue[trainer.epoch] = json.dumps(all_plots)
|
||||
if time() - session.timers['metrics'] > session.rate_limits['metrics']:
|
||||
session.upload_metrics()
|
||||
session.t['metrics'] = time() # reset timer
|
||||
session.timers['metrics'] = time() # reset timer
|
||||
session.metrics_queue = {} # reset queue
|
||||
|
||||
|
||||
@ -30,21 +39,21 @@ def on_model_save(trainer):
|
||||
if session:
|
||||
# Upload checkpoints with rate limiting
|
||||
is_best = trainer.best_fitness == trainer.fitness
|
||||
if time() - session.t['ckpt'] > session.rate_limits['ckpt']:
|
||||
if time() - session.timers['ckpt'] > session.rate_limits['ckpt']:
|
||||
LOGGER.info(f'{PREFIX}Uploading checkpoint {session.model_id}')
|
||||
session.upload_model(trainer.epoch, trainer.last, is_best)
|
||||
session.t['ckpt'] = time() # reset timer
|
||||
session.timers['ckpt'] = time() # reset timer
|
||||
|
||||
|
||||
def on_train_end(trainer):
|
||||
session = getattr(trainer, 'hub_session', None)
|
||||
if session:
|
||||
# Upload final model and metrics with exponential standoff
|
||||
LOGGER.info(f'{PREFIX}Training completed successfully ✅\n'
|
||||
f'{PREFIX}Uploading final {session.model_id}')
|
||||
session.upload_model(trainer.epoch, trainer.best, map=trainer.metrics['metrics/mAP50-95(B)'], final=True)
|
||||
session.shutdown() # stop heartbeats
|
||||
LOGGER.info(f'{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀')
|
||||
LOGGER.info(f'{PREFIX}Syncing final model...')
|
||||
session.upload_model(trainer.epoch, trainer.best, map=trainer.metrics.get('metrics/mAP50-95(B)', 0), final=True)
|
||||
session.alive = False # stop heartbeats
|
||||
LOGGER.info(f'{PREFIX}Done ✅\n'
|
||||
f'{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀')
|
||||
|
||||
|
||||
def on_train_start(trainer):
|
||||
|
@ -1,8 +1,12 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
|
||||
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER
|
||||
assert not TESTS_RUNNING # do not log pytest
|
||||
except (ImportError, AssertionError):
|
||||
SummaryWriter = None
|
||||
|
||||
writer = None # TensorBoard SummaryWriter instance
|
||||
|
||||
@ -18,7 +22,6 @@ def on_pretrain_routine_start(trainer):
|
||||
try:
|
||||
writer = SummaryWriter(str(trainer.save_dir))
|
||||
except Exception as e:
|
||||
writer = None # TensorBoard SummaryWriter instance
|
||||
LOGGER.warning(f'WARNING ⚠️ TensorBoard not initialized correctly, not logging this run. {e}')
|
||||
|
||||
|
||||
|
@ -21,7 +21,7 @@ import torch
|
||||
from matplotlib import font_manager
|
||||
|
||||
from ultralytics.yolo.utils import (AUTOINSTALL, LOGGER, ROOT, USER_CONFIG_DIR, TryExcept, colorstr, downloads, emojis,
|
||||
is_colab, is_docker, is_jupyter)
|
||||
is_colab, is_docker, is_jupyter, is_online)
|
||||
|
||||
|
||||
def is_ascii(s) -> bool:
|
||||
@ -171,21 +171,6 @@ def check_font(font='Arial.ttf'):
|
||||
return file
|
||||
|
||||
|
||||
def check_online() -> bool:
|
||||
"""
|
||||
Check internet connectivity by attempting to connect to a known online host.
|
||||
|
||||
Returns:
|
||||
bool: True if connection is successful, False otherwise.
|
||||
"""
|
||||
import socket
|
||||
with contextlib.suppress(Exception):
|
||||
host = socket.gethostbyname('www.github.com')
|
||||
socket.create_connection((host, 80), timeout=2)
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_python(minimum: str = '3.7.0') -> bool:
|
||||
"""
|
||||
Check current python version against the required minimum version.
|
||||
@ -229,7 +214,7 @@ def check_requirements(requirements=ROOT.parent / 'requirements.txt', exclude=()
|
||||
if s and install and AUTOINSTALL: # check environment variable
|
||||
LOGGER.info(f"{prefix} YOLOv8 requirement{'s' * (n > 1)} {s}not found, attempting AutoUpdate...")
|
||||
try:
|
||||
assert check_online(), 'AutoUpdate skipped (offline)'
|
||||
assert is_online(), 'AutoUpdate skipped (offline)'
|
||||
LOGGER.info(subprocess.check_output(f'pip install {s} {cmds}', shell=True).decode())
|
||||
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {file or requirements}\n" \
|
||||
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
|
||||
@ -249,13 +234,13 @@ def check_suffix(file='yolov8n.pt', suffix='.pt', msg=''):
|
||||
assert s in suffix, f'{msg}{f} acceptable suffix is {suffix}'
|
||||
|
||||
|
||||
def check_yolov5u_filename(file: str):
|
||||
def check_yolov5u_filename(file: str, verbose: bool = True):
|
||||
# Replace legacy YOLOv5 filenames with updated YOLOv5u filenames
|
||||
if 'yolov3' in file or 'yolov5' in file and 'u' not in file:
|
||||
original_file = file
|
||||
file = re.sub(r'(.*yolov5([nsmlx]))\.', '\\1u.', file) # i.e. yolov5n.pt -> yolov5nu.pt
|
||||
file = re.sub(r'(.*yolov3(|-tiny|-spp))\.', '\\1u.', file) # i.e. yolov3-spp.pt -> yolov3-sppu.pt
|
||||
if file != original_file:
|
||||
if file != original_file and verbose:
|
||||
LOGGER.info(f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
|
||||
f'trained with https://github.com/ultralytics/ultralytics and feature improved performance vs '
|
||||
f'standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n')
|
||||
|
@ -12,7 +12,7 @@ import requests
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, checks
|
||||
from ultralytics.yolo.utils import LOGGER, checks, is_online
|
||||
|
||||
GITHUB_ASSET_NAMES = [f'yolov8{size}{suffix}.pt' for size in 'nsmlx' for suffix in ('', '6', '-cls', '-seg')] + \
|
||||
[f'yolov5{size}u.pt' for size in 'nsmlx'] + \
|
||||
@ -112,7 +112,7 @@ def safe_download(url,
|
||||
break # success
|
||||
f.unlink() # remove partial downloads
|
||||
except Exception as e:
|
||||
if i == 0 and not checks.check_online():
|
||||
if i == 0 and not is_online():
|
||||
raise ConnectionError(f'❌ Download failure for {url}. Environment is not online.') from e
|
||||
elif i >= retry:
|
||||
raise ConnectionError(f'❌ Download failure for {url}. Retry limit reached.') from e
|
||||
@ -134,8 +134,7 @@ def safe_download(url,
|
||||
|
||||
def attempt_download_asset(file, repo='ultralytics/assets', release='v0.0.0'):
|
||||
# Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v6.2', etc.
|
||||
from ultralytics.yolo.utils import SETTINGS
|
||||
from ultralytics.yolo.utils.checks import check_yolov5u_filename
|
||||
from ultralytics.yolo.utils import SETTINGS # scoped for circular import
|
||||
|
||||
def github_assets(repository, version='latest'):
|
||||
# Return GitHub repo tag and assets (i.e. ['yolov8n.pt', 'yolov8s.pt', ...])
|
||||
@ -146,7 +145,7 @@ def attempt_download_asset(file, repo='ultralytics/assets', release='v0.0.0'):
|
||||
|
||||
# YOLOv3/5u updates
|
||||
file = str(file)
|
||||
file = check_yolov5u_filename(file)
|
||||
file = checks.check_yolov5u_filename(file)
|
||||
file = Path(file.strip().replace("'", ''))
|
||||
if file.exists():
|
||||
return str(file)
|
||||
|
@ -43,16 +43,18 @@ def bbox_ioa(box1, box2, eps=1e-7):
|
||||
|
||||
|
||||
def box_iou(box1, box2, eps=1e-7):
|
||||
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
||||
"""
|
||||
Return intersection-over-union (Jaccard index) of boxes.
|
||||
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||
Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
||||
|
||||
Arguments:
|
||||
box1 (Tensor[N, 4])
|
||||
box2 (Tensor[M, 4])
|
||||
eps
|
||||
|
||||
Returns:
|
||||
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
||||
IoU values for every element in boxes1 and boxes2
|
||||
iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2
|
||||
"""
|
||||
|
||||
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
||||
@ -109,7 +111,7 @@ def mask_iou(mask1, mask2, eps=1e-7):
|
||||
mask1: [N, n] m1 means number of predicted objects
|
||||
mask2: [M, n] m2 means number of gt objects
|
||||
Note: n means image_w x image_h
|
||||
return: masks iou, [N, M]
|
||||
Returns: masks iou, [N, M]
|
||||
"""
|
||||
intersection = torch.matmul(mask1, mask2.t()).clamp(0)
|
||||
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
|
||||
@ -121,7 +123,7 @@ def masks_iou(mask1, mask2, eps=1e-7):
|
||||
mask1: [N, n] m1 means number of predicted objects
|
||||
mask2: [N, n] m2 means number of gt objects
|
||||
Note: n means image_w x image_h
|
||||
return: masks iou, (N, )
|
||||
Returns: masks iou, (N, )
|
||||
"""
|
||||
intersection = (mask1 * mask2).sum(1).clamp(0) # (N, )
|
||||
union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection
|
||||
@ -317,10 +319,10 @@ def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confi
|
||||
|
||||
def compute_ap(recall, precision):
|
||||
""" Compute the average precision, given the recall and precision curves
|
||||
# Arguments
|
||||
Arguments:
|
||||
recall: The recall curve (list)
|
||||
precision: The precision curve (list)
|
||||
# Returns
|
||||
Returns:
|
||||
Average precision, precision curve, recall curve
|
||||
"""
|
||||
|
||||
@ -344,17 +346,30 @@ def compute_ap(recall, precision):
|
||||
|
||||
|
||||
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=Path(), names=(), eps=1e-16, prefix=''):
|
||||
""" Compute the average precision, given the recall and precision curves.
|
||||
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||||
# Arguments
|
||||
tp: True positives (nparray, nx1 or nx10).
|
||||
conf: Objectness value from 0-1 (nparray).
|
||||
pred_cls: Predicted object classes (nparray).
|
||||
target_cls: True object classes (nparray).
|
||||
plot: Plot precision-recall curve at mAP@0.5
|
||||
save_dir: Plot save directory
|
||||
# Returns
|
||||
The average precision as computed in py-faster-rcnn.
|
||||
"""
|
||||
Computes the average precision per class for object detection evaluation.
|
||||
|
||||
Args:
|
||||
tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False).
|
||||
conf (np.ndarray): Array of confidence scores of the detections.
|
||||
pred_cls (np.ndarray): Array of predicted classes of the detections.
|
||||
target_cls (np.ndarray): Array of true classes of the detections.
|
||||
plot (bool, optional): Whether to plot PR curves or not. Defaults to False.
|
||||
save_dir (Path, optional): Directory to save the PR curves. Defaults to an empty path.
|
||||
names (tuple, optional): Tuple of class names to plot PR curves. Defaults to an empty tuple.
|
||||
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-16.
|
||||
prefix (str, optional): A prefix string for saving the plot files. Defaults to an empty string.
|
||||
|
||||
Returns:
|
||||
(tuple): A tuple of six arrays and one array of unique classes, where:
|
||||
tp (np.ndarray): True positive counts for each class.
|
||||
fp (np.ndarray): False positive counts for each class.
|
||||
p (np.ndarray): Precision values at each confidence threshold.
|
||||
r (np.ndarray): Recall values at each confidence threshold.
|
||||
f1 (np.ndarray): F1-score values at each confidence threshold.
|
||||
ap (np.ndarray): Average precision for each class at different IoU thresholds.
|
||||
unique_classes (np.ndarray): An array of unique classes that have data.
|
||||
|
||||
"""
|
||||
|
||||
# Sort by objectness
|
||||
@ -411,6 +426,32 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=Path(), na
|
||||
|
||||
|
||||
class Metric:
|
||||
"""
|
||||
Class for computing evaluation metrics for YOLOv8 model.
|
||||
|
||||
Attributes:
|
||||
p (list): Precision for each class. Shape: (nc,).
|
||||
r (list): Recall for each class. Shape: (nc,).
|
||||
f1 (list): F1 score for each class. Shape: (nc,).
|
||||
all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).
|
||||
ap_class_index (list): Index of class for each AP score. Shape: (nc,).
|
||||
nc (int): Number of classes.
|
||||
|
||||
Methods:
|
||||
ap50(): AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
|
||||
ap(): AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
|
||||
mp(): Mean precision of all classes. Returns: Float.
|
||||
mr(): Mean recall of all classes. Returns: Float.
|
||||
map50(): Mean AP at IoU threshold of 0.5 for all classes. Returns: Float.
|
||||
map75(): Mean AP at IoU threshold of 0.75 for all classes. Returns: Float.
|
||||
map(): Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float.
|
||||
mean_results(): Mean of results, returns mp, mr, map50, map.
|
||||
class_result(i): Class-aware result, returns p[i], r[i], ap50[i], ap[i].
|
||||
maps(): mAP of each class. Returns: Array of mAP scores, shape: (nc,).
|
||||
fitness(): Model fitness as a weighted combination of metrics. Returns: Float.
|
||||
update(results): Update metric attributes with new evaluation results.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.p = [] # (nc, )
|
||||
@ -420,10 +461,14 @@ class Metric:
|
||||
self.ap_class_index = [] # (nc, )
|
||||
self.nc = 0
|
||||
|
||||
def __getattr__(self, attr):
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
@property
|
||||
def ap50(self):
|
||||
"""AP@0.5 of all classes.
|
||||
Return:
|
||||
Returns:
|
||||
(nc, ) or [].
|
||||
"""
|
||||
return self.all_ap[:, 0] if len(self.all_ap) else []
|
||||
@ -431,7 +476,7 @@ class Metric:
|
||||
@property
|
||||
def ap(self):
|
||||
"""AP@0.5:0.95
|
||||
Return:
|
||||
Returns:
|
||||
(nc, ) or [].
|
||||
"""
|
||||
return self.all_ap.mean(1) if len(self.all_ap) else []
|
||||
@ -439,7 +484,7 @@ class Metric:
|
||||
@property
|
||||
def mp(self):
|
||||
"""mean precision of all classes.
|
||||
Return:
|
||||
Returns:
|
||||
float.
|
||||
"""
|
||||
return self.p.mean() if len(self.p) else 0.0
|
||||
@ -447,7 +492,7 @@ class Metric:
|
||||
@property
|
||||
def mr(self):
|
||||
"""mean recall of all classes.
|
||||
Return:
|
||||
Returns:
|
||||
float.
|
||||
"""
|
||||
return self.r.mean() if len(self.r) else 0.0
|
||||
@ -455,7 +500,7 @@ class Metric:
|
||||
@property
|
||||
def map50(self):
|
||||
"""Mean AP@0.5 of all classes.
|
||||
Return:
|
||||
Returns:
|
||||
float.
|
||||
"""
|
||||
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
|
||||
@ -463,7 +508,7 @@ class Metric:
|
||||
@property
|
||||
def map75(self):
|
||||
"""Mean AP@0.75 of all classes.
|
||||
Return:
|
||||
Returns:
|
||||
float.
|
||||
"""
|
||||
return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0
|
||||
@ -471,7 +516,7 @@ class Metric:
|
||||
@property
|
||||
def map(self):
|
||||
"""Mean AP@0.5:0.95 of all classes.
|
||||
Return:
|
||||
Returns:
|
||||
float.
|
||||
"""
|
||||
return self.all_ap.mean() if len(self.all_ap) else 0.0
|
||||
@ -506,6 +551,32 @@ class Metric:
|
||||
|
||||
|
||||
class DetMetrics:
|
||||
"""
|
||||
This class is a utility class for computing detection metrics such as precision, recall, and mean average precision
|
||||
(mAP) of an object detection model.
|
||||
|
||||
Args:
|
||||
save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory.
|
||||
plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False.
|
||||
names (tuple of str): A tuple of strings that represents the names of the classes. Defaults to an empty tuple.
|
||||
|
||||
Attributes:
|
||||
save_dir (Path): A path to the directory where the output plots will be saved.
|
||||
plot (bool): A flag that indicates whether to plot the precision-recall curves for each class.
|
||||
names (tuple of str): A tuple of strings that represents the names of the classes.
|
||||
box (Metric): An instance of the Metric class for storing the results of the detection metrics.
|
||||
speed (dict): A dictionary for storing the execution time of different parts of the detection process.
|
||||
|
||||
Methods:
|
||||
process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions.
|
||||
keys: Returns a list of keys for accessing the computed detection metrics.
|
||||
mean_results: Returns a list of mean values for the computed detection metrics.
|
||||
class_result(i): Returns a list of values for the computed detection metrics for a specific class.
|
||||
maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds.
|
||||
fitness: Computes the fitness score based on the computed detection metrics.
|
||||
ap_class_index: Returns a list of class indices sorted by their average precision (AP) values.
|
||||
results_dict: Returns a dictionary that maps detection metric keys to their computed values.
|
||||
"""
|
||||
|
||||
def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None:
|
||||
self.save_dir = save_dir
|
||||
@ -514,6 +585,10 @@ class DetMetrics:
|
||||
self.box = Metric()
|
||||
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
||||
|
||||
def __getattr__(self, attr):
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
def process(self, tp, conf, pred_cls, target_cls):
|
||||
results = ap_per_class(tp, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir,
|
||||
names=self.names)[2:]
|
||||
@ -548,6 +623,31 @@ class DetMetrics:
|
||||
|
||||
|
||||
class SegmentMetrics:
|
||||
"""
|
||||
Calculates and aggregates detection and segmentation metrics over a given set of classes.
|
||||
|
||||
Args:
|
||||
save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
|
||||
plot (bool): Whether to save the detection and segmentation plots. Default is False.
|
||||
names (list): List of class names. Default is an empty list.
|
||||
|
||||
Attributes:
|
||||
save_dir (Path): Path to the directory where the output plots should be saved.
|
||||
plot (bool): Whether to save the detection and segmentation plots.
|
||||
names (list): List of class names.
|
||||
box (Metric): An instance of the Metric class to calculate box detection metrics.
|
||||
seg (Metric): An instance of the Metric class to calculate mask segmentation metrics.
|
||||
speed (dict): Dictionary to store the time taken in different phases of inference.
|
||||
|
||||
Methods:
|
||||
process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
|
||||
mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
|
||||
class_result(i): Returns the detection and segmentation metrics of class `i`.
|
||||
maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
|
||||
fitness: Returns the fitness scores, which are a single weighted combination of metrics.
|
||||
ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
|
||||
results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
|
||||
"""
|
||||
|
||||
def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None:
|
||||
self.save_dir = save_dir
|
||||
@ -557,7 +657,22 @@ class SegmentMetrics:
|
||||
self.seg = Metric()
|
||||
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
||||
|
||||
def __getattr__(self, attr):
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
def process(self, tp_m, tp_b, conf, pred_cls, target_cls):
|
||||
"""
|
||||
Processes the detection and segmentation metrics over the given set of predictions.
|
||||
|
||||
Args:
|
||||
tp_m (list): List of True Positive masks.
|
||||
tp_b (list): List of True Positive boxes.
|
||||
conf (list): List of confidence scores.
|
||||
pred_cls (list): List of predicted classes.
|
||||
target_cls (list): List of target classes.
|
||||
"""
|
||||
|
||||
results_mask = ap_per_class(tp_m,
|
||||
conf,
|
||||
pred_cls,
|
||||
@ -610,12 +725,32 @@ class SegmentMetrics:
|
||||
|
||||
|
||||
class ClassifyMetrics:
|
||||
"""
|
||||
Class for computing classification metrics including top-1 and top-5 accuracy.
|
||||
|
||||
Attributes:
|
||||
top1 (float): The top-1 accuracy.
|
||||
top5 (float): The top-5 accuracy.
|
||||
speed (Dict[str, float]): A dictionary containing the time taken for each step in the pipeline.
|
||||
|
||||
Properties:
|
||||
fitness (float): The fitness of the model, which is equal to top-5 accuracy.
|
||||
results_dict (Dict[str, Union[float, str]]): A dictionary containing the classification metrics and fitness.
|
||||
keys (List[str]): A list of keys for the results_dict.
|
||||
|
||||
Methods:
|
||||
process(targets, pred): Processes the targets and predictions to compute classification metrics.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.top1 = 0
|
||||
self.top5 = 0
|
||||
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
||||
|
||||
def __getattr__(self, attr):
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
def process(self, targets, pred):
|
||||
# target classes and predicted classes
|
||||
pred, targets = torch.cat(pred), torch.cat(targets)
|
||||
|
@ -301,14 +301,14 @@ def plot_images(images,
|
||||
|
||||
# Plot masks
|
||||
if len(masks):
|
||||
if masks.max() > 1.0: # mean that masks are overlap
|
||||
if idx.shape[0] == masks.shape[0]: # overlap_masks=False
|
||||
image_masks = masks[idx]
|
||||
else: # overlap_masks=True
|
||||
image_masks = masks[[i]] # (1, 640, 640)
|
||||
nl = idx.sum()
|
||||
index = np.arange(nl).reshape(nl, 1, 1) + 1
|
||||
image_masks = np.repeat(image_masks, nl, axis=0)
|
||||
image_masks = np.where(image_masks == index, 1.0, 0.0)
|
||||
else:
|
||||
image_masks = masks[idx]
|
||||
|
||||
im = np.asarray(annotator.im).copy()
|
||||
for j, box in enumerate(boxes.T.tolist()):
|
||||
|
Reference in New Issue
Block a user