Fix error with exporting quantized saved model when labels cache not present (#4174)

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
single_channel
Colin Wong 1 year ago committed by GitHub
parent f0ad1a7f5a
commit 730af8390b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -24,13 +24,13 @@ def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='',
det_results = det_model(data, stream=True, device=device)
for result in det_results:
boxes = result.boxes.xyxy # Boxes object for bbox outputs
class_ids = result.boxes.cls.int().tolist() # noqa
if len(class_ids):
boxes = result.boxes.xyxy # Boxes object for bbox outputs
sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device)
segments = sam_results[0].masks.xyn # noqa
with open(str(Path(output_dir) / Path(result.path).stem) + '.txt', 'w') as f:
with open(f'{str(Path(output_dir) / Path(result.path).stem)}.txt', 'w') as f:
for i in range(len(segments)):
s = segments[i]
if len(s) == 0:

@ -605,7 +605,8 @@ class Exporter:
# Generate calibration data for integer quantization
LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'")
dataset = YOLODataset(check_det_dataset(self.args.data)['val'], imgsz=self.imgsz[0], augment=False)
data = check_det_dataset(self.args.data)
dataset = YOLODataset(data['val'], data=data, imgsz=self.imgsz[0], augment=False)
images = []
n_images = 100 # maximum number of images
for n, batch in enumerate(dataset):

Loading…
Cancel
Save