COCO8 and COCO8-seg Pytest and CI updates (#307)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: RangiLyu <lyuchqi@gmail.com>
This commit is contained in:
@ -82,7 +82,7 @@ class ConvTranspose(nn.Module):
|
||||
|
||||
|
||||
class DFL(nn.Module):
|
||||
# DFL module
|
||||
# Integral module of Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
|
||||
def __init__(self, c1=16):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
|
||||
|
101
ultralytics/yolo/data/datasets/coco8-seg.yaml
Normal file
101
ultralytics/yolo/data/datasets/coco8-seg.yaml
Normal file
@ -0,0 +1,101 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Example usage: python train.py --data coco8-seg.yaml
|
||||
# parent
|
||||
# ├── yolov5
|
||||
# └── datasets
|
||||
# └── coco8-seg ← downloads here (1 MB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco8-seg # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
3: motorcycle
|
||||
4: airplane
|
||||
5: bus
|
||||
6: train
|
||||
7: truck
|
||||
8: boat
|
||||
9: traffic light
|
||||
10: fire hydrant
|
||||
11: stop sign
|
||||
12: parking meter
|
||||
13: bench
|
||||
14: bird
|
||||
15: cat
|
||||
16: dog
|
||||
17: horse
|
||||
18: sheep
|
||||
19: cow
|
||||
20: elephant
|
||||
21: bear
|
||||
22: zebra
|
||||
23: giraffe
|
||||
24: backpack
|
||||
25: umbrella
|
||||
26: handbag
|
||||
27: tie
|
||||
28: suitcase
|
||||
29: frisbee
|
||||
30: skis
|
||||
31: snowboard
|
||||
32: sports ball
|
||||
33: kite
|
||||
34: baseball bat
|
||||
35: baseball glove
|
||||
36: skateboard
|
||||
37: surfboard
|
||||
38: tennis racket
|
||||
39: bottle
|
||||
40: wine glass
|
||||
41: cup
|
||||
42: fork
|
||||
43: knife
|
||||
44: spoon
|
||||
45: bowl
|
||||
46: banana
|
||||
47: apple
|
||||
48: sandwich
|
||||
49: orange
|
||||
50: broccoli
|
||||
51: carrot
|
||||
52: hot dog
|
||||
53: pizza
|
||||
54: donut
|
||||
55: cake
|
||||
56: chair
|
||||
57: couch
|
||||
58: potted plant
|
||||
59: bed
|
||||
60: dining table
|
||||
61: toilet
|
||||
62: tv
|
||||
63: laptop
|
||||
64: mouse
|
||||
65: remote
|
||||
66: keyboard
|
||||
67: cell phone
|
||||
68: microwave
|
||||
69: oven
|
||||
70: toaster
|
||||
71: sink
|
||||
72: refrigerator
|
||||
73: book
|
||||
74: clock
|
||||
75: vase
|
||||
76: scissors
|
||||
77: teddy bear
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/coco8-seg.zip
|
101
ultralytics/yolo/data/datasets/coco8.yaml
Normal file
101
ultralytics/yolo/data/datasets/coco8.yaml
Normal file
@ -0,0 +1,101 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Example usage: python train.py --data coco8.yaml
|
||||
# parent
|
||||
# ├── yolov5
|
||||
# └── datasets
|
||||
# └── coco8 ← downloads here (1 MB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco8 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
3: motorcycle
|
||||
4: airplane
|
||||
5: bus
|
||||
6: train
|
||||
7: truck
|
||||
8: boat
|
||||
9: traffic light
|
||||
10: fire hydrant
|
||||
11: stop sign
|
||||
12: parking meter
|
||||
13: bench
|
||||
14: bird
|
||||
15: cat
|
||||
16: dog
|
||||
17: horse
|
||||
18: sheep
|
||||
19: cow
|
||||
20: elephant
|
||||
21: bear
|
||||
22: zebra
|
||||
23: giraffe
|
||||
24: backpack
|
||||
25: umbrella
|
||||
26: handbag
|
||||
27: tie
|
||||
28: suitcase
|
||||
29: frisbee
|
||||
30: skis
|
||||
31: snowboard
|
||||
32: sports ball
|
||||
33: kite
|
||||
34: baseball bat
|
||||
35: baseball glove
|
||||
36: skateboard
|
||||
37: surfboard
|
||||
38: tennis racket
|
||||
39: bottle
|
||||
40: wine glass
|
||||
41: cup
|
||||
42: fork
|
||||
43: knife
|
||||
44: spoon
|
||||
45: bowl
|
||||
46: banana
|
||||
47: apple
|
||||
48: sandwich
|
||||
49: orange
|
||||
50: broccoli
|
||||
51: carrot
|
||||
52: hot dog
|
||||
53: pizza
|
||||
54: donut
|
||||
55: cake
|
||||
56: chair
|
||||
57: couch
|
||||
58: potted plant
|
||||
59: bed
|
||||
60: dining table
|
||||
61: toilet
|
||||
62: tv
|
||||
63: laptop
|
||||
64: mouse
|
||||
65: remote
|
||||
66: keyboard
|
||||
67: cell phone
|
||||
68: microwave
|
||||
69: oven
|
||||
70: toaster
|
||||
71: sink
|
||||
72: refrigerator
|
||||
73: book
|
||||
74: clock
|
||||
75: vase
|
||||
76: scissors
|
||||
77: teddy bear
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/coco8.zip
|
@ -47,6 +47,7 @@ class BboxLoss(nn.Module):
|
||||
@staticmethod
|
||||
def _df_loss(pred_dist, target):
|
||||
# Return sum of left and right DFL losses
|
||||
# Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
|
||||
tl = target.long() # target left
|
||||
tr = tl + 1 # target right
|
||||
wl = tr - target # weight left
|
||||
|
@ -1,11 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.yolo.configs import hydra_patch # noqa (patch hydra cli)
|
||||
from ultralytics.yolo.v8 import classify, detect, segment
|
||||
|
||||
ROOT = Path(__file__).parents[0] # yolov8 ROOT
|
||||
|
||||
__all__ = ["classify", "segment", "detect"]
|
||||
|
||||
from ultralytics.yolo.configs import hydra_patch # noqa (patch hydra cli)
|
||||
|
Reference in New Issue
Block a user