COCO8 and COCO8-seg Pytest and CI updates (#307)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: RangiLyu <lyuchqi@gmail.com>
This commit is contained in:
Glenn Jocher
2023-01-13 14:34:51 +01:00
committed by GitHub
parent 2bc36d97ce
commit 70427579b8
13 changed files with 254 additions and 59 deletions

View File

@ -15,11 +15,11 @@ def test_checks():
# Train checks ---------------------------------------------------------------------------------------------------------
def test_train_det():
os.system(f'yolo mode=train task=detect model={CFG}.yaml data=coco128.yaml imgsz=32 epochs=1')
os.system(f'yolo mode=train task=detect model={CFG}.yaml data=coco8.yaml imgsz=32 epochs=1')
def test_train_seg():
os.system(f'yolo mode=train task=segment model={CFG}-seg.yaml data=coco128-seg.yaml imgsz=32 epochs=1')
os.system(f'yolo mode=train task=segment model={CFG}-seg.yaml data=coco8-seg.yaml imgsz=32 epochs=1')
def test_train_cls():
@ -28,11 +28,11 @@ def test_train_cls():
# Val checks -----------------------------------------------------------------------------------------------------------
def test_val_detect():
os.system(f'yolo mode=val task=detect model={MODEL}.pt data=coco128.yaml imgsz=32 epochs=1')
os.system(f'yolo mode=val task=detect model={MODEL}.pt data=coco8.yaml imgsz=32 epochs=1')
def test_val_segment():
os.system(f'yolo mode=val task=segment model={MODEL}-seg.pt data=coco128-seg.yaml imgsz=32 epochs=1')
os.system(f'yolo mode=val task=segment model={MODEL}-seg.pt data=coco8-seg.yaml imgsz=32 epochs=1')
def test_val_classify():

View File

@ -1,6 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
from ultralytics import YOLO
from ultralytics.yolo.configs import get_config
from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT
from ultralytics.yolo.v8 import classify, detect, segment
@ -13,9 +12,10 @@ SOURCE = ROOT / "assets"
def test_detect():
overrides = {"data": "coco128.yaml", "model": CFG_DET, "imgsz": 32, "epochs": 1, "save": False}
CFG.data = "coco128.yaml"
# trainer
overrides = {"data": "coco8.yaml", "model": CFG_DET, "imgsz": 32, "epochs": 1, "save": False}
CFG.data = "coco8.yaml"
# Trainer
trainer = detect.DetectionTrainer(overrides=overrides)
trainer.train()
trained_model = trainer.best
@ -24,12 +24,10 @@ def test_detect():
val = detect.DetectionValidator(args=CFG)
val(model=trained_model)
# predictor
pred = detect.DetectionPredictor(overrides={"imgsz": [640, 640]})
i = 0
for _ in pred(source=SOURCE, model="yolov8n.pt", return_outputs=True):
i += 1
assert i == 2, "predictor test failed"
# Predictor
pred = detect.DetectionPredictor(overrides={"imgsz": [64, 64]})
result = pred(source=SOURCE, model="yolov8n.pt", return_outputs=True)
assert len(list(result)), "predictor test failed"
overrides["resume"] = trainer.last
trainer = detect.DetectionTrainer(overrides=overrides)
@ -43,11 +41,11 @@ def test_detect():
def test_segment():
overrides = {"data": "coco128-seg.yaml", "model": CFG_SEG, "imgsz": 32, "epochs": 1, "save": False}
CFG.data = "coco128-seg.yaml"
overrides = {"data": "coco8-seg.yaml", "model": CFG_SEG, "imgsz": 32, "epochs": 1, "save": False}
CFG.data = "coco8-seg.yaml"
CFG.v5loader = False
# YOLO(CFG_SEG).train(**overrides) # works
# YOLO(CFG_SEG).train(**overrides) # This works
# trainer
trainer = segment.SegmentationTrainer(overrides=overrides)
trainer.train()
@ -57,14 +55,12 @@ def test_segment():
val = segment.SegmentationValidator(args=CFG)
val(model=trained_model)
# predictor
pred = segment.SegmentationPredictor(overrides={"imgsz": [640, 640]})
i = 0
for _ in pred(source=SOURCE, model="yolov8n-seg.pt", return_outputs=True):
i += 1
assert i == 2, "predictor test failed"
# Predictor
pred = segment.SegmentationPredictor(overrides={"imgsz": [64, 64]})
result = pred(source=SOURCE, model="yolov8n-seg.pt", return_outputs=True)
assert len(list(result)) == 2, "predictor test failed"
# test resume
# Test resume
overrides["resume"] = trainer.last
trainer = segment.SegmentationTrainer(overrides=overrides)
try:
@ -81,8 +77,9 @@ def test_classify():
CFG.data = "mnist160"
CFG.imgsz = 32
CFG.batch = 64
# YOLO(CFG_SEG).train(**overrides) # This works
# trainer
# YOLO(CFG_SEG).train(**overrides) # works
# Trainer
trainer = classify.ClassificationTrainer(overrides=overrides)
trainer.train()
trained_model = trainer.best
@ -91,9 +88,7 @@ def test_classify():
val = classify.ClassificationValidator(args=CFG)
val(model=trained_model)
# predictor
pred = classify.ClassificationPredictor(overrides={"imgsz": [640, 640]})
i = 0
for _ in pred(source=SOURCE, model=trained_model, return_outputs=True):
i += 1
assert i == 2, "predictor test failed"
# Predictor
pred = classify.ClassificationPredictor(overrides={"imgsz": [64, 64]})
result = pred(source=SOURCE, model=trained_model, return_outputs=True)
assert len(list(result)) == 2, "predictor test failed"

View File

@ -37,18 +37,18 @@ def test_predict_dir():
def test_val():
model = YOLO(MODEL)
model.val(data="coco128.yaml", imgsz=32)
model.val(data="coco8.yaml", imgsz=32)
def test_train_scratch():
model = YOLO(CFG)
model.train(data="coco128.yaml", epochs=1, imgsz=32)
model.train(data="coco8.yaml", epochs=1, imgsz=32)
model(SOURCE)
def test_train_pretrained():
model = YOLO(MODEL)
model.train(data="coco128.yaml", epochs=1, imgsz=32)
model.train(data="coco8.yaml", epochs=1, imgsz=32)
model(SOURCE)
@ -102,7 +102,7 @@ def test_all_model_yamls():
def test_workflow():
model = YOLO(MODEL)
model.train(data="coco128.yaml", epochs=1, imgsz=32)
model.train(data="coco8.yaml", epochs=1, imgsz=32)
model.val()
model.predict(SOURCE)
model.export(format="onnx", opset=12) # export a model to ONNX format