ultralytics 8.0.54
TFLite export improvements and fixes (#1447)
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -17,7 +17,7 @@ def on_predict_batch_end(predictor):
|
||||
im0s = im0s if isinstance(im0s, list) else [im0s]
|
||||
predictor.results = zip(predictor.results, im0s)
|
||||
|
||||
model = YOLO(f"yolov8n.pt")
|
||||
model = YOLO(f'yolov8n.pt')
|
||||
model.add_callback("on_predict_batch_end", on_predict_batch_end)
|
||||
for (result, frame) in model.track/predict():
|
||||
pass
|
||||
|
@ -59,8 +59,8 @@ Use a trained YOLOv8n model to run predictions on images.
|
||||
!!! example ""
|
||||
|
||||
```bash
|
||||
yolo detect predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model
|
||||
yolo detect predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model
|
||||
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
||||
```
|
||||
|
||||
## Export
|
||||
|
@ -6,7 +6,7 @@ The simplest way of simply using YOLOv8 directly in a Python environment.
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.pt") # pass any model type
|
||||
model = YOLO('yolov8n.pt') # pass any model type
|
||||
model.train(epochs=5)
|
||||
```
|
||||
|
||||
@ -14,8 +14,8 @@ The simplest way of simply using YOLOv8 directly in a Python environment.
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.yaml")
|
||||
model.train(data="coco128.yaml", epochs=5)
|
||||
model = YOLO('yolov8n.yaml')
|
||||
model.train(data='coco128.yaml', epochs=5)
|
||||
```
|
||||
|
||||
=== "Resume"
|
||||
@ -31,8 +31,8 @@ The simplest way of simply using YOLOv8 directly in a Python environment.
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.yaml")
|
||||
model.train(data="coco128.yaml", epochs=5)
|
||||
model = YOLO('yolov8n.yaml')
|
||||
model.train(data='coco128.yaml', epochs=5)
|
||||
model.val() # It'll automatically evaluate the data you trained.
|
||||
```
|
||||
|
||||
@ -44,7 +44,7 @@ The simplest way of simply using YOLOv8 directly in a Python environment.
|
||||
# It'll use the data yaml file in model.pt if you don't set data.
|
||||
model.val()
|
||||
# or you can set the data you want to val
|
||||
model.val(data="coco128.yaml")
|
||||
model.val(data='coco128.yaml')
|
||||
```
|
||||
|
||||
!!! example "Predict"
|
||||
|
Reference in New Issue
Block a user