Classify training cleanup (#33)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -1,25 +1,27 @@
|
||||
model: null
|
||||
data: null
|
||||
# YOLO 🚀 by Ultralytics, GPL-3.0 license
|
||||
# Default training settings and hyperparameters for medium-augmentation COCO training
|
||||
|
||||
# Training options
|
||||
|
||||
# Train settings -------------------------------------------------------------------------------------------------------
|
||||
model: null # i.e. yolov5s.pt
|
||||
data: null # i.e. coco128.yaml
|
||||
epochs: 300
|
||||
batch_size: 16
|
||||
img_size: 640
|
||||
nosave: False
|
||||
cache: False # True/ram for ram, or disc
|
||||
device: '' # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
cache: False # True/ram, disk or False
|
||||
device: '' # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
workers: 8
|
||||
project: "ultralytics-yolo"
|
||||
name: "exp" # TODO: make this informative, maybe exp{#number}_{datetime} ?
|
||||
project: 'runs'
|
||||
name: 'exp'
|
||||
exist_ok: False
|
||||
pretrained: False
|
||||
optimizer: "Adam" # choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
|
||||
optimizer: 'SGD' # choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
|
||||
verbose: False
|
||||
seed: 0
|
||||
local_rank: -1
|
||||
#-----------------------------------#
|
||||
|
||||
# Hyper-parameters
|
||||
# Hyperparameters ------------------------------------------------------------------------------------------------------
|
||||
lr0: 0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
|
||||
momentum: 0.937 # SGD momentum/Adam beta1
|
||||
@ -50,9 +52,8 @@ mosaic: 1.0 # image mosaic (probability)
|
||||
mixup: 0.0 # image mixup (probability)
|
||||
copy_paste: 0.0 # segment copy-paste (probability)
|
||||
|
||||
# Hydra configs -------------------------------------
|
||||
# to disable hydra directory creation
|
||||
# Hydra configs --------------------------------------------------------------------------------------------------------
|
||||
hydra:
|
||||
output_subdir: null
|
||||
output_subdir: null # disable hydra directory creation
|
||||
run:
|
||||
dir: .
|
@ -107,18 +107,17 @@ def parse_model(d, ch): # model_dict, input_channels(3)
|
||||
return nn.Sequential(*layers), sorted(save)
|
||||
|
||||
|
||||
def get_model(model: str):
|
||||
def get_model(model='s.pt', pretrained=True):
|
||||
# Load a YOLO model locally, from torchvision, or from Ultralytics assets
|
||||
if model.endswith(".pt"):
|
||||
model = model.split(".")[0]
|
||||
|
||||
if Path(model + ".pt").is_file():
|
||||
trained_model = torch.load(model + ".pt", map_location='cpu')
|
||||
elif model in torchvision.models.__dict__: # try torch hub classifier models
|
||||
trained_model = torch.hub.load("pytorch/vision", model, pretrained=True)
|
||||
else:
|
||||
model_ckpt = attempt_download(model + ".pt") # try ultralytics assets
|
||||
trained_model = torch.load(model_ckpt, map_location='cpu')
|
||||
return trained_model
|
||||
if Path(f"{model}.pt").is_file(): # local file
|
||||
return torch.load(f"{model}.pt", map_location='cpu')
|
||||
elif model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
|
||||
return torchvision.models.__dict__[model](weights='IMAGENET1K_V1' if pretrained else None)
|
||||
else: # Ultralytics assets
|
||||
return torch.load(attempt_download(f"{model}.pt"), map_location='cpu')
|
||||
|
||||
|
||||
def yaml_load(file='data.yaml'):
|
||||
|
Reference in New Issue
Block a user