Add best.pt val and COCO pycocotools val (#98)

Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2022-12-27 04:56:24 +01:00
committed by GitHub
parent a1808eeda4
commit 6f0ba81427
12 changed files with 159 additions and 115 deletions

View File

@ -17,10 +17,10 @@ from ..detect import DetectionTrainer
# BaseTrainer python usage
class SegmentationTrainer(DetectionTrainer):
def load_model(self, model_cfg=None, weights=None):
model = SegmentationModel(model_cfg or weights["model"].yaml, ch=3, nc=self.data["nc"])
def load_model(self, model_cfg=None, weights=None, verbose=True):
model = SegmentationModel(model_cfg or weights["model"].yaml, ch=3, nc=self.data["nc"], verbose=verbose)
if weights:
model.load(weights)
model.load(weights, verbose)
return model
def get_validator(self):

View File

@ -7,7 +7,6 @@ import torch.nn.functional as F
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.checks import check_requirements
from ultralytics.yolo.utils.metrics import ConfusionMatrix, SegmentMetrics, box_iou, mask_iou
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
@ -19,7 +18,6 @@ class SegmentationValidator(DetectionValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
super().__init__(dataloader, save_dir, pbar, logger, args)
if self.args.save_json:
check_requirements(['pycocotools'])
self.process = ops.process_mask_upsample # more accurate
else:
self.process = ops.process_mask # faster
@ -42,14 +40,12 @@ class SegmentationValidator(DetectionValidator):
def init_metrics(self, model):
head = model.model[-1] if self.training else model.model.model[-1]
if self.data:
self.is_coco = isinstance(self.data.get('val'),
str) and self.data['val'].endswith(f'coco{os.sep}val2017.txt')
self.is_coco = self.data.get('val', '').endswith(f'coco{os.sep}val2017.txt') # is COCO dataset
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
self.args.save_json |= self.is_coco and not self.training # run on final val if training COCO
self.nc = head.nc
self.nm = head.nm if hasattr(head, "nm") else 32
self.names = model.names
if isinstance(self.names, (list, tuple)): # old format
self.names = dict(enumerate(self.names))
self.metrics.names = self.names
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
self.plot_masks = []
@ -70,7 +66,7 @@ class SegmentationValidator(DetectionValidator):
agnostic=self.args.single_cls,
max_det=self.args.max_det,
nm=self.nm)
return (p, preds[1], preds[2])
return p, preds[1], preds[2]
def update_metrics(self, preds, batch):
# Metrics
@ -117,8 +113,7 @@ class SegmentationValidator(DetectionValidator):
masks=True)
if self.args.plots:
self.confusion_matrix.process_batch(predn, labelsn)
self.stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:,
0])) # (conf, pcls, tcls)
self.stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # conf, pcls, tcls
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
if self.args.plots and self.batch_i < 3:
@ -186,28 +181,22 @@ class SegmentationValidator(DetectionValidator):
"metrics/mAP50-95(M)",]
def plot_val_samples(self, batch, ni):
images = batch["img"]
masks = batch["masks"]
cls = batch["cls"].squeeze(-1)
bboxes = batch["bboxes"]
paths = batch["im_file"]
batch_idx = batch["batch_idx"]
plot_images(images,
batch_idx,
cls,
bboxes,
masks,
paths=paths,
plot_images(batch["img"],
batch["batch_idx"],
batch["cls"].squeeze(-1),
batch["bboxes"],
batch["masks"],
paths=batch["im_file"],
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
names=self.names)
def plot_predictions(self, batch, preds, ni):
images = batch["img"]
paths = batch["im_file"]
if len(self.plot_masks):
plot_masks = torch.cat(self.plot_masks, dim=0)
plot_images(images, *output_to_target(preds[0], max_det=15), plot_masks, paths,
self.save_dir / f'val_batch{ni}_pred.jpg', self.names) # pred
plot_images(batch["img"],
*output_to_target(preds[0], max_det=15),
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks,
paths=batch["im_file"],
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
names=self.names) # pred
self.plot_masks.clear()