Add best.pt val and COCO pycocotools val (#98)
Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -12,8 +12,8 @@ class ClassificationTrainer(BaseTrainer):
|
||||
def set_model_attributes(self):
|
||||
self.model.names = self.data["names"]
|
||||
|
||||
def load_model(self, model_cfg=None, weights=None):
|
||||
# TODO: why treat clf models as unique. We should have clf yamls?
|
||||
def load_model(self, model_cfg=None, weights=None, verbose=True):
|
||||
# TODO: why treat clf models as unique. We should have clf yamls? YES WE SHOULD!
|
||||
if isinstance(weights, dict): # yolo ckpt
|
||||
weights = weights["model"]
|
||||
if weights and not weights.__class__.__name__.startswith("yolo"): # torchvision
|
||||
@ -57,6 +57,9 @@ class ClassificationTrainer(BaseTrainer):
|
||||
def resume_training(self, ckpt):
|
||||
pass
|
||||
|
||||
def final_eval(self):
|
||||
pass
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
||||
def train(cfg):
|
||||
|
Reference in New Issue
Block a user