Add best.pt val and COCO pycocotools val (#98)
Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -12,8 +12,8 @@ class ClassificationTrainer(BaseTrainer):
|
||||
def set_model_attributes(self):
|
||||
self.model.names = self.data["names"]
|
||||
|
||||
def load_model(self, model_cfg=None, weights=None):
|
||||
# TODO: why treat clf models as unique. We should have clf yamls?
|
||||
def load_model(self, model_cfg=None, weights=None, verbose=True):
|
||||
# TODO: why treat clf models as unique. We should have clf yamls? YES WE SHOULD!
|
||||
if isinstance(weights, dict): # yolo ckpt
|
||||
weights = weights["model"]
|
||||
if weights and not weights.__class__.__name__.startswith("yolo"): # torchvision
|
||||
@ -57,6 +57,9 @@ class ClassificationTrainer(BaseTrainer):
|
||||
def resume_training(self, ckpt):
|
||||
pass
|
||||
|
||||
def final_eval(self):
|
||||
pass
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
||||
def train(cfg):
|
||||
|
@ -13,7 +13,7 @@ from ultralytics.yolo.utils.metrics import smooth_BCE
|
||||
from ultralytics.yolo.utils.ops import xywh2xyxy
|
||||
from ultralytics.yolo.utils.plotting import plot_images, plot_results
|
||||
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
|
||||
from ultralytics.yolo.utils.torch_utils import de_parallel
|
||||
from ultralytics.yolo.utils.torch_utils import de_parallel, strip_optimizer
|
||||
|
||||
|
||||
# BaseTrainer python usage
|
||||
@ -54,10 +54,10 @@ class DetectionTrainer(BaseTrainer):
|
||||
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
|
||||
self.model.names = self.data["names"]
|
||||
|
||||
def load_model(self, model_cfg=None, weights=None):
|
||||
model = DetectionModel(model_cfg or weights["model"].yaml, ch=3, nc=self.data["nc"])
|
||||
def load_model(self, model_cfg=None, weights=None, verbose=True):
|
||||
model = DetectionModel(model_cfg or weights["model"].yaml, ch=3, nc=self.data["nc"], verbose=verbose)
|
||||
if weights:
|
||||
model.load(weights)
|
||||
model.load(weights, verbose)
|
||||
return model
|
||||
|
||||
def get_validator(self):
|
||||
|
@ -1,14 +1,16 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import hydra
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ultralytics.yolo.data import build_dataloader
|
||||
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.engine.validator import BaseValidator
|
||||
from ultralytics.yolo.utils import ops
|
||||
from ultralytics.yolo.utils.checks import check_file
|
||||
from ultralytics.yolo.utils import colorstr, ops
|
||||
from ultralytics.yolo.utils.checks import check_file, check_requirements
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
from ultralytics.yolo.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
|
||||
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
|
||||
@ -43,13 +45,11 @@ class DetectionValidator(BaseValidator):
|
||||
def init_metrics(self, model):
|
||||
head = model.model[-1] if self.training else model.model.model[-1]
|
||||
if self.data:
|
||||
self.is_coco = isinstance(self.data.get('val'),
|
||||
str) and self.data['val'].endswith(f'coco{os.sep}val2017.txt')
|
||||
self.is_coco = self.data.get('val', '').endswith(f'coco{os.sep}val2017.txt') # is COCO dataset
|
||||
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
|
||||
self.args.save_json |= self.is_coco and not self.training # run on final val if training COCO
|
||||
self.nc = head.nc
|
||||
self.names = model.names
|
||||
if isinstance(self.names, (list, tuple)): # old format
|
||||
self.names = dict(enumerate(self.names))
|
||||
self.metrics.names = self.names
|
||||
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
|
||||
self.seen = 0
|
||||
@ -107,11 +107,6 @@ class DetectionValidator(BaseValidator):
|
||||
'''
|
||||
if self.args.save_txt:
|
||||
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
||||
if self.args.save_json:
|
||||
pred_masks = scale_image(im[si].shape[1:],
|
||||
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1])
|
||||
save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary
|
||||
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
|
||||
'''
|
||||
|
||||
def get_stats(self):
|
||||
@ -131,7 +126,7 @@ class DetectionValidator(BaseValidator):
|
||||
f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels')
|
||||
|
||||
# Print results per class
|
||||
if (self.args.verbose or (self.nc < 50 and not self.training)) and self.nc > 1 and len(self.stats):
|
||||
if (self.args.verbose or not self.training) and self.nc > 1 and len(self.stats):
|
||||
for i, c in enumerate(self.metrics.ap_class_index):
|
||||
self.logger.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))
|
||||
|
||||
@ -167,7 +162,19 @@ class DetectionValidator(BaseValidator):
|
||||
# TODO: manage splits differently
|
||||
# calculate stride - check if model is initialized
|
||||
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
|
||||
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0]
|
||||
return create_dataloader(path=dataset_path,
|
||||
imgsz=self.args.imgsz,
|
||||
batch_size=batch_size,
|
||||
stride=gs,
|
||||
hyp=dict(self.args),
|
||||
cache=False,
|
||||
pad=0.5,
|
||||
rect=self.args.rect,
|
||||
workers=self.args.workers,
|
||||
prefix=colorstr(f'{val}: '),
|
||||
shuffle=False,
|
||||
seed=self.args.seed)[0] if self.args.v5loader else \
|
||||
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0]
|
||||
|
||||
# TODO: align with train loss metrics
|
||||
@property
|
||||
@ -175,28 +182,58 @@ class DetectionValidator(BaseValidator):
|
||||
return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP50(B)", "metrics/mAP50-95(B)"]
|
||||
|
||||
def plot_val_samples(self, batch, ni):
|
||||
images = batch["img"]
|
||||
cls = batch["cls"].squeeze(-1)
|
||||
bboxes = batch["bboxes"]
|
||||
paths = batch["im_file"]
|
||||
batch_idx = batch["batch_idx"]
|
||||
plot_images(images,
|
||||
batch_idx,
|
||||
cls,
|
||||
bboxes,
|
||||
paths=paths,
|
||||
plot_images(batch["img"],
|
||||
batch["batch_idx"],
|
||||
batch["cls"].squeeze(-1),
|
||||
batch["bboxes"],
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
||||
names=self.names)
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
images = batch["img"]
|
||||
paths = batch["im_file"]
|
||||
plot_images(images,
|
||||
plot_images(batch["img"],
|
||||
*output_to_target(preds, max_det=15),
|
||||
paths=paths,
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
names=self.names) # pred
|
||||
|
||||
def pred_to_json(self, preds, batch):
|
||||
for i, f in enumerate(batch["im_file"]):
|
||||
stem = Path(f).stem
|
||||
image_id = int(stem) if stem.isnumeric() else stem
|
||||
box = ops.xyxy2xywh(preds[i][:, :4]) # xywh
|
||||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||
for p, b in zip(preds[i].tolist(), box.tolist()):
|
||||
self.jdict.append({
|
||||
'image_id': image_id,
|
||||
'category_id': self.class_map[int(p[5])],
|
||||
'bbox': [round(x, 3) for x in b],
|
||||
'score': round(p[4], 5)})
|
||||
|
||||
def eval_json(self):
|
||||
if self.args.save_json and self.is_coco and len(self.jdict):
|
||||
anno_json = self.data['path'] / "annotations/instances_val2017.json" # annotations
|
||||
pred_json = self.save_dir / "predictions.json" # predictions
|
||||
self.logger.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
|
||||
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||
check_requirements('pycocotools')
|
||||
from pycocotools.coco import COCO # noqa
|
||||
from pycocotools.cocoeval import COCOeval # noqa
|
||||
|
||||
for x in anno_json, pred_json:
|
||||
assert x.is_file(), f"{x} file not found"
|
||||
anno = COCO(str(anno_json)) # init annotations api
|
||||
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
|
||||
eval = COCOeval(anno, pred, 'bbox')
|
||||
if self.is_coco:
|
||||
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval
|
||||
eval.evaluate()
|
||||
eval.accumulate()
|
||||
eval.summarize()
|
||||
self.metrics.metric.map, self.metrics.metric.map50 = eval.stats[:2] # update mAP50-95 and mAP50
|
||||
except Exception as e:
|
||||
self.logger.warning(f'pycocotools unable to run: {e}')
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
||||
def val(cfg):
|
||||
|
@ -17,10 +17,10 @@ from ..detect import DetectionTrainer
|
||||
# BaseTrainer python usage
|
||||
class SegmentationTrainer(DetectionTrainer):
|
||||
|
||||
def load_model(self, model_cfg=None, weights=None):
|
||||
model = SegmentationModel(model_cfg or weights["model"].yaml, ch=3, nc=self.data["nc"])
|
||||
def load_model(self, model_cfg=None, weights=None, verbose=True):
|
||||
model = SegmentationModel(model_cfg or weights["model"].yaml, ch=3, nc=self.data["nc"], verbose=verbose)
|
||||
if weights:
|
||||
model.load(weights)
|
||||
model.load(weights, verbose)
|
||||
return model
|
||||
|
||||
def get_validator(self):
|
||||
|
@ -7,7 +7,6 @@ import torch.nn.functional as F
|
||||
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.utils import ops
|
||||
from ultralytics.yolo.utils.checks import check_requirements
|
||||
from ultralytics.yolo.utils.metrics import ConfusionMatrix, SegmentMetrics, box_iou, mask_iou
|
||||
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
|
||||
|
||||
@ -19,7 +18,6 @@ class SegmentationValidator(DetectionValidator):
|
||||
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
|
||||
super().__init__(dataloader, save_dir, pbar, logger, args)
|
||||
if self.args.save_json:
|
||||
check_requirements(['pycocotools'])
|
||||
self.process = ops.process_mask_upsample # more accurate
|
||||
else:
|
||||
self.process = ops.process_mask # faster
|
||||
@ -42,14 +40,12 @@ class SegmentationValidator(DetectionValidator):
|
||||
def init_metrics(self, model):
|
||||
head = model.model[-1] if self.training else model.model.model[-1]
|
||||
if self.data:
|
||||
self.is_coco = isinstance(self.data.get('val'),
|
||||
str) and self.data['val'].endswith(f'coco{os.sep}val2017.txt')
|
||||
self.is_coco = self.data.get('val', '').endswith(f'coco{os.sep}val2017.txt') # is COCO dataset
|
||||
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
|
||||
self.args.save_json |= self.is_coco and not self.training # run on final val if training COCO
|
||||
self.nc = head.nc
|
||||
self.nm = head.nm if hasattr(head, "nm") else 32
|
||||
self.names = model.names
|
||||
if isinstance(self.names, (list, tuple)): # old format
|
||||
self.names = dict(enumerate(self.names))
|
||||
self.metrics.names = self.names
|
||||
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
|
||||
self.plot_masks = []
|
||||
@ -70,7 +66,7 @@ class SegmentationValidator(DetectionValidator):
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
nm=self.nm)
|
||||
return (p, preds[1], preds[2])
|
||||
return p, preds[1], preds[2]
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
# Metrics
|
||||
@ -117,8 +113,7 @@ class SegmentationValidator(DetectionValidator):
|
||||
masks=True)
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(predn, labelsn)
|
||||
self.stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:,
|
||||
0])) # (conf, pcls, tcls)
|
||||
self.stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # conf, pcls, tcls
|
||||
|
||||
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
|
||||
if self.args.plots and self.batch_i < 3:
|
||||
@ -186,28 +181,22 @@ class SegmentationValidator(DetectionValidator):
|
||||
"metrics/mAP50-95(M)",]
|
||||
|
||||
def plot_val_samples(self, batch, ni):
|
||||
images = batch["img"]
|
||||
masks = batch["masks"]
|
||||
cls = batch["cls"].squeeze(-1)
|
||||
bboxes = batch["bboxes"]
|
||||
paths = batch["im_file"]
|
||||
batch_idx = batch["batch_idx"]
|
||||
plot_images(images,
|
||||
batch_idx,
|
||||
cls,
|
||||
bboxes,
|
||||
masks,
|
||||
paths=paths,
|
||||
plot_images(batch["img"],
|
||||
batch["batch_idx"],
|
||||
batch["cls"].squeeze(-1),
|
||||
batch["bboxes"],
|
||||
batch["masks"],
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
||||
names=self.names)
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
images = batch["img"]
|
||||
paths = batch["im_file"]
|
||||
if len(self.plot_masks):
|
||||
plot_masks = torch.cat(self.plot_masks, dim=0)
|
||||
plot_images(images, *output_to_target(preds[0], max_det=15), plot_masks, paths,
|
||||
self.save_dir / f'val_batch{ni}_pred.jpg', self.names) # pred
|
||||
plot_images(batch["img"],
|
||||
*output_to_target(preds[0], max_det=15),
|
||||
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks,
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
names=self.names) # pred
|
||||
self.plot_masks.clear()
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user