`ultralytics 8.0.30` Docker, rect, data=*.zip updates (#832)

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent 09265b17d7
commit 64f247d692
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -29,7 +29,7 @@ jobs:
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build and push arm64 image
uses: docker/build-push-action@v3
uses: docker/build-push-action@v4
continue-on-error: true
with:
context: .
@ -39,7 +39,7 @@ jobs:
tags: ultralytics/ultralytics:latest-arm64
- name: Build and push CPU image
uses: docker/build-push-action@v3
uses: docker/build-push-action@v4
continue-on-error: true
with:
context: .
@ -48,7 +48,7 @@ jobs:
tags: ultralytics/ultralytics:latest-cpu
- name: Build and push GPU image
uses: docker/build-push-action@v3
uses: docker/build-push-action@v4
continue-on-error: true
with:
context: .

@ -26,11 +26,9 @@ RUN git clone https://github.com/ultralytics/ultralytics /usr/src/ultralytics
# Install pip packages
COPY requirements.txt .
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache ultralytics gsutil notebook \
tensorflow-aarch64
# tensorflowjs \
# onnx onnx-simplifier onnxruntime \
# coremltools openvino-dev>=2022.3 \
RUN pip install --no-cache ultralytics albumentations gsutil notebook \
coremltools onnx onnx-simplifier onnxruntime openvino-dev>=2022.3
# tensorflow-aarch64 tensorflowjs \
# Cleanup
ENV DEBIAN_FRONTEND teletype

@ -108,6 +108,7 @@ task.
| overlap_mask | True | masks should overlap during training (segment train only) |
| mask_ratio | 4 | mask downsample ratio (segment train only) |
| dropout | 0.0 | use dropout regularization (classify train only) |
| val | True | validate/test during training |
### Prediction
@ -148,7 +149,6 @@ validation dataset and to detect and prevent overfitting.
| Key | Value | Description |
|-------------|-------|-----------------------------------------------------------------------------|
| val | True | validate/test during training |
| save_json | False | save results to JSON file |
| save_hybrid | False | save hybrid version of labels (labels + additional predictions) |
| conf | 0.001 | object confidence threshold for detection (default 0.25 predict, 0.001 val) |
@ -157,6 +157,7 @@ validation dataset and to detect and prevent overfitting.
| half | True | use half precision (FP16) |
| dnn | False | use OpenCV DNN for ONNX inference |
| plots | False | show plots during training |
| rect | False | support rectangular evaluation |
### Export

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
__version__ = "8.0.29"
__version__ = "8.0.30"
from ultralytics.yolo.engine.model import YOLO
from ultralytics.yolo.utils import ops

@ -338,8 +338,9 @@ def torch_safe_load(weight):
if e.name == 'omegaconf': # e.name is missing module name
LOGGER.warning(f"WARNING ⚠️ {weight} requires {e.name}, which is not in ultralytics requirements."
f"\nAutoInstall will run now for {e.name} but this feature will be removed in the future."
f"\nRecommend fixes are to train a new model using updated ultraltyics package or to "
f"\nRecommend fixes are to train a new model using updated ultralytics package or to "
f"download updated models from https://github.com/ultralytics/assets/releases/tag/v0.0.0")
if e.name != 'models':
check_requirements(e.name) # install missing module
return torch.load(file, map_location='cpu') # load

@ -25,7 +25,7 @@ seed: 0 # random seed for reproducibility
deterministic: True # whether to enable deterministic mode
single_cls: False # train multi-class data as single-class
image_weights: False # use weighted image selection for training
rect: False # support rectangular training
rect: False # support rectangular training if mode='train', support rectangular evaluation if mode='val'
cos_lr: False # use cosine learning rate scheduler
close_mosaic: 10 # disable mosaic augmentation for final 10 epochs
resume: False # resume training from last checkpoint

@ -61,7 +61,7 @@ def seed_worker(worker_id):
random.seed(worker_seed)
def build_dataloader(cfg, batch_size, img_path, stride=32, label_path=None, rank=-1, mode="train"):
def build_dataloader(cfg, batch_size, img_path, stride=32, rect=False, label_path=None, rank=-1, mode="train"):
assert mode in ["train", "val"]
shuffle = mode == "train"
if cfg.rect and shuffle:
@ -75,7 +75,7 @@ def build_dataloader(cfg, batch_size, img_path, stride=32, label_path=None, rank
batch_size=batch_size,
augment=mode == "train", # augmentation
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
rect=cfg.rect if mode == "train" else True, # rectangular batches
rect=cfg.rect or rect, # rectangular batches
cache=cfg.cache or None,
single_cls=cfg.single_cls or False,
stride=int(stride),

@ -113,13 +113,15 @@ class YOLODataset(BaseDataset):
tqdm(None, desc=self.prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) # display cache results
if cache["msgs"]:
LOGGER.info("\n".join(cache["msgs"])) # display warnings
assert nf > 0, f"{self.prefix}No labels found in {cache_path}, can not start training. {HELP_URL}"
if nf == 0: # number of labels found
raise FileNotFoundError(f"{self.prefix}No labels found in {cache_path}, can not start training. {HELP_URL}")
# Read cache
[cache.pop(k) for k in ("hash", "version", "msgs")] # remove items
labels = cache["labels"]
# Check if the dataset is all boxes or all segments
len_cls = sum(len(lb["cls"]) for lb in labels)
len_boxes = sum(len(lb["bboxes"]) for lb in labels)
len_segments = sum(len(lb["segments"]) for lb in labels)
if len_segments and len_boxes != len_segments:
@ -129,8 +131,8 @@ class YOLODataset(BaseDataset):
"To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset.")
for lb in labels:
lb["segments"] = []
nl = len(np.concatenate([label["cls"] for label in labels], 0)) # number of labels
assert nl > 0, f"{self.prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}"
if len_cls == 0:
raise ValueError(f"{self.prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}")
return labels
# TODO: use hyp config to set all these augmentations

@ -192,7 +192,7 @@ def check_det_dataset(dataset, autodownload=True):
# Download (optional)
extract_dir = ''
if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)):
download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1)
download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False, threads=1)
data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
extract_dir, autodownload = data.parent, False
@ -211,7 +211,8 @@ def check_det_dataset(dataset, autodownload=True):
data['nc'] = len(data['names'])
# Resolve paths
path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.'
path = Path(extract_dir or data.get('path') or Path(data.get('yaml_file', '')).parent) # dataset root
if not path.is_absolute():
path = (DATASETS_DIR / path).resolve()
data['path'] = path # download scripts

@ -156,6 +156,7 @@ class YOLO:
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
"""
overrides = self.overrides.copy()
overrides["rect"] = True # rect batches as default
overrides.update(kwargs)
overrides["mode"] = "val"
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)

@ -116,13 +116,16 @@ class BaseTrainer:
# Model and Dataloaders.
self.model = self.args.model
self.data = self.args.data
if self.data.endswith(".yaml"):
self.data = check_det_dataset(self.data)
elif self.args.task == 'classify':
self.data = check_cls_dataset(self.data)
else:
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' not found ❌"))
try:
if self.args.task == 'classify':
self.data = check_cls_dataset(self.args.data)
elif self.args.data.endswith(".yaml") or self.args.task in ('detect', 'segment'):
self.data = check_det_dataset(self.args.data)
if 'yaml_file' in self.data:
self.args.data = self.data['yaml_file'] # for validating 'yolo train data=url.zip' usage
except Exception as e:
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' error ❌ {e}")) from e
self.trainset, self.testset = self.get_dataset(self.data)
self.ema = None

@ -117,6 +117,8 @@ class BaseValidator:
if self.device.type == 'cpu':
self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading
if not pt:
self.args.rect = False
self.dataloader = self.dataloader or \
self.get_dataloader(self.data.get("val") or self.data.set("test"), self.args.batch)

@ -491,6 +491,7 @@ def set_sentry():
((is_pip_package() and not is_git_dir()) or
(get_git_origin_url() == "https://github.com/ultralytics/ultralytics.git" and get_git_branch() == "main")):
import hashlib
import sentry_sdk # noqa
from ultralytics import __version__
@ -502,13 +503,14 @@ def set_sentry():
environment='production', # 'dev' or 'production'
before_send=before_send,
ignore_errors=[KeyboardInterrupt, FileNotFoundError])
sentry_sdk.set_user({"id": SETTINGS['uuid']})
# Disable all sentry logging
for logger in "sentry_sdk", "sentry_sdk.errors":
logging.getLogger(logger).setLevel(logging.CRITICAL)
def get_settings(file=USER_CONFIG_DIR / 'settings.yaml', version='0.0.1'):
def get_settings(file=USER_CONFIG_DIR / 'settings.yaml', version='0.0.2'):
"""
Loads a global Ultralytics settings YAML file or creates one with default values if it does not exist.
@ -519,6 +521,7 @@ def get_settings(file=USER_CONFIG_DIR / 'settings.yaml', version='0.0.1'):
Returns:
dict: Dictionary of settings key-value pairs.
"""
import hashlib
from ultralytics.yolo.utils.checks import check_version
from ultralytics.yolo.utils.torch_utils import torch_distributed_zero_first
@ -530,7 +533,7 @@ def get_settings(file=USER_CONFIG_DIR / 'settings.yaml', version='0.0.1'):
'weights_dir': str(root / 'weights'), # default weights directory.
'runs_dir': str(root / 'runs'), # default runs directory.
'sync': True, # sync analytics to help with YOLO development
'uuid': uuid.getnode(), # device UUID to align analytics
'uuid': hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(), # anonymized uuid hash
'settings_version': version} # Ultralytics settings version
with torch_distributed_zero_first(RANK):
@ -544,10 +547,9 @@ def get_settings(file=USER_CONFIG_DIR / 'settings.yaml', version='0.0.1'):
and all(type(a) == type(b) for a, b in zip(settings.values(), defaults.values())) \
and check_version(settings['settings_version'], version)
if not correct:
LOGGER.warning('WARNING ⚠️ Ultralytics settings reset to defaults. '
'\nThis is normal and may be due to a recent ultralytics package update, '
'but may have overwritten previous settings. '
f"\nYou may view and update settings directly in '{file}'")
LOGGER.warning('WARNING ⚠️ Ultralytics settings reset to defaults. This is normal and may be due to a '
'recent ultralytics package update, but may have overwritten previous settings. '
f"\nView and update settings with 'yolo settings' or at '{file}'")
settings = defaults # merge **defaults with **settings (prefer **settings)
yaml_save(file, settings) # save updated defaults

@ -247,7 +247,7 @@ def check_file(file, suffix=''):
if Path(file).is_file():
LOGGER.info(f'Found {url} locally at {file}') # file already exists
else:
downloads.safe_download(url=url, file=file)
downloads.safe_download(url=url, file=file, unzip=False)
return file
else: # search
files = []

@ -28,6 +28,19 @@ def is_url(url, check=True):
return False
def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX')):
"""
Unzip a *.zip file to path/, excluding files containing strings in exclude list
Replaces: ZipFile(file).extractall(path=path)
"""
if path is None:
path = Path(file).parent # default path
with ZipFile(file) as zipObj:
for f in zipObj.namelist(): # list all archived filenames in the zip
if all(x not in f for x in exclude):
zipObj.extract(f, path=path)
def safe_download(url,
file=None,
dir=None,
@ -96,13 +109,14 @@ def safe_download(url,
LOGGER.warning(f'⚠️ Download failure, retrying {i + 1}/{retry} {url}...')
if unzip and f.exists() and f.suffix in {'.zip', '.tar', '.gz'}:
LOGGER.info(f'Unzipping {f}...')
unzip_dir = dir or f.parent # unzip to dir if provided else unzip in place
LOGGER.info(f'Unzipping {f} to {unzip_dir}...')
if f.suffix == '.zip':
ZipFile(f).extractall(path=f.parent) # unzip
unzip_file(file=f, path=unzip_dir) # unzip
elif f.suffix == '.tar':
subprocess.run(['tar', 'xf', f, '--directory', f.parent], check=True) # unzip
subprocess.run(['tar', 'xf', f, '--directory', unzip_dir], check=True) # unzip
elif f.suffix == '.gz':
subprocess.run(['tar', 'xfz', f, '--directory', f.parent], check=True) # unzip
subprocess.run(['tar', 'xfz', f, '--directory', unzip_dir], check=True) # unzip
if delete:
f.unlink() # remove zip

@ -33,14 +33,14 @@ class DetectionTrainer(BaseTrainer):
augment=mode == "train",
cache=self.args.cache,
pad=0 if mode == "train" else 0.5,
rect=self.args.rect,
rect=self.args.rect or mode=="val",
rank=rank,
workers=self.args.workers,
close_mosaic=self.args.close_mosaic != 0,
prefix=colorstr(f'{mode}: '),
shuffle=mode == "train",
seed=self.args.seed)[0] if self.args.v5loader else \
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode)[0]
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode, rect=mode=="val")[0]
def preprocess_batch(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255

@ -22,7 +22,6 @@ class DetectionValidator(BaseValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
super().__init__(dataloader, save_dir, pbar, logger, args)
self.args.task = 'detect'
self.data_dict = yaml_load(check_file(self.args.data), append_filename=True) if self.args.data else None
self.is_coco = False
self.class_map = None
self.metrics = DetMetrics(save_dir=self.save_dir)
@ -172,7 +171,7 @@ class DetectionValidator(BaseValidator):
hyp=vars(self.args),
cache=False,
pad=0.5,
rect=True,
rect=self.args.rect,
workers=self.args.workers,
prefix=colorstr(f'{self.args.mode}: '),
shuffle=False,

Loading…
Cancel
Save