Rename img_size
to imgsz
(#86)
This commit is contained in:
@ -55,11 +55,11 @@ class ClassificationPredictor(BasePredictor):
|
||||
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
|
||||
def predict(cfg):
|
||||
cfg.model = cfg.model or "squeezenet1_0"
|
||||
sz = cfg.img_size
|
||||
sz = cfg.imgsz
|
||||
if type(sz) != int: # recieved listConfig
|
||||
cfg.img_size = [sz[0], sz[0]] if len(cfg.img_size) == 1 else [sz[0], sz[1]] # expand
|
||||
cfg.imgsz = [sz[0], sz[0]] if len(cfg.imgsz) == 1 else [sz[0], sz[1]] # expand
|
||||
else:
|
||||
cfg.img_size = [sz, sz]
|
||||
cfg.imgsz = [sz, sz]
|
||||
predictor = ClassificationPredictor(cfg)
|
||||
predictor()
|
||||
|
||||
|
@ -36,7 +36,7 @@ class ClassificationTrainer(BaseTrainer):
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size, rank=0, mode="train"):
|
||||
return build_classification_dataloader(path=dataset_path,
|
||||
imgsz=self.args.img_size,
|
||||
imgsz=self.args.imgsz,
|
||||
batch_size=batch_size,
|
||||
rank=rank)
|
||||
|
||||
@ -70,7 +70,7 @@ def train(cfg):
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
CLI usage:
|
||||
python ultralytics/yolo/v8/classify/train.py model=resnet18 data=imagenette160 epochs=1 img_size=224
|
||||
python ultralytics/yolo/v8/classify/train.py model=resnet18 data=imagenette160 epochs=1 imgsz=224
|
||||
|
||||
TODO:
|
||||
Direct cli support, i.e, yolov8 classify_train args.epochs 10
|
||||
|
@ -28,7 +28,7 @@ class ClassificationValidator(BaseValidator):
|
||||
return {"top1": top1, "top5": top5, "fitness": top5}
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size):
|
||||
return build_classification_dataloader(path=dataset_path, imgsz=self.args.img_size, batch_size=batch_size)
|
||||
return build_classification_dataloader(path=dataset_path, imgsz=self.args.imgsz, batch_size=batch_size)
|
||||
|
||||
@property
|
||||
def metric_keys(self):
|
||||
|
@ -84,11 +84,11 @@ class DetectionPredictor(BasePredictor):
|
||||
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
|
||||
def predict(cfg):
|
||||
cfg.model = cfg.model or "n.pt"
|
||||
sz = cfg.img_size
|
||||
sz = cfg.imgsz
|
||||
if type(sz) != int: # recieved listConfig
|
||||
cfg.img_size = [sz[0], sz[0]] if len(cfg.img_size) == 1 else [sz[0], sz[1]] # expand
|
||||
cfg.imgsz = [sz[0], sz[0]] if len(cfg.imgsz) == 1 else [sz[0], sz[1]] # expand
|
||||
else:
|
||||
cfg.img_size = [sz, sz]
|
||||
cfg.imgsz = [sz, sz]
|
||||
predictor = DetectionPredictor(cfg)
|
||||
predictor()
|
||||
|
||||
|
@ -28,7 +28,7 @@ class DetectionTrainer(BaseTrainer):
|
||||
nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)
|
||||
self.args.box *= 3 / nl # scale to layers
|
||||
self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
|
||||
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
|
||||
self.args.obj *= (self.args.imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
|
||||
self.model.nc = self.data["nc"] # attach number of classes to model
|
||||
self.model.args = self.args # attach hyperparameters to model
|
||||
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
|
||||
@ -223,7 +223,7 @@ def train(cfg):
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
CLI usage:
|
||||
python ultralytics/yolo/v8/detect/train.py model=yolov5n.yaml data=coco128 epochs=100 img_size=640
|
||||
python ultralytics/yolo/v8/detect/train.py model=yolov5n.yaml data=coco128 epochs=100 imgsz=640
|
||||
|
||||
TODO:
|
||||
yolo task=detect mode=train model=yolov5n.yaml data=coco128.yaml epochs=100
|
||||
|
@ -102,11 +102,11 @@ class SegmentationPredictor(DetectionPredictor):
|
||||
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
|
||||
def predict(cfg):
|
||||
cfg.model = cfg.model or "n.pt"
|
||||
sz = cfg.img_size
|
||||
sz = cfg.imgsz
|
||||
if type(sz) != int: # recieved listConfig
|
||||
cfg.img_size = [sz[0], sz[0]] if len(cfg.img_size) == 1 else [sz[0], sz[1]] # expand
|
||||
cfg.imgsz = [sz[0], sz[0]] if len(cfg.imgsz) == 1 else [sz[0], sz[1]] # expand
|
||||
else:
|
||||
cfg.img_size = [sz, sz]
|
||||
cfg.imgsz = [sz, sz]
|
||||
predictor = SegmentationPredictor(cfg)
|
||||
predictor()
|
||||
|
||||
|
@ -243,7 +243,7 @@ def train(cfg):
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
CLI usage:
|
||||
python ultralytics/yolo/v8/segment/train.py model=yolov5n-seg.yaml data=coco128-segments epochs=100 img_size=640
|
||||
python ultralytics/yolo/v8/segment/train.py model=yolov5n-seg.yaml data=coco128-segments epochs=100 imgsz=640
|
||||
|
||||
TODO:
|
||||
Direct cli support, i.e, yolov8 classify_train args.epochs 10
|
||||
|
Reference in New Issue
Block a user