Rename img_size
to imgsz
(#86)
This commit is contained in:
@ -111,11 +111,11 @@ class YOLO:
|
||||
predictor = self.PredictorClass(overrides=kwargs)
|
||||
|
||||
# check size type
|
||||
sz = predictor.args.img_size
|
||||
sz = predictor.args.imgsz
|
||||
if type(sz) != int: # recieved listConfig
|
||||
predictor.args.img_size = [sz[0], sz[0]] if len(sz) == 1 else [sz[0], sz[1]] # expand
|
||||
predictor.args.imgsz = [sz[0], sz[0]] if len(sz) == 1 else [sz[0], sz[1]] # expand
|
||||
else:
|
||||
predictor.args.img_size = [sz, sz]
|
||||
predictor.args.imgsz = [sz, sz]
|
||||
|
||||
predictor.setup(model=self.model, source=source)
|
||||
predictor()
|
||||
|
@ -39,7 +39,7 @@ from ultralytics.yolo.utils.configs import get_config
|
||||
from ultralytics.yolo.utils.files import increment_path
|
||||
from ultralytics.yolo.utils.modeling.autobackend import AutoBackend
|
||||
from ultralytics.yolo.utils.plotting import Annotator
|
||||
from ultralytics.yolo.utils.torch_utils import check_img_size, select_device, smart_inference_mode
|
||||
from ultralytics.yolo.utils.torch_utils import check_imgsz, select_device, smart_inference_mode
|
||||
|
||||
DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml"
|
||||
|
||||
@ -99,18 +99,18 @@ class BasePredictor:
|
||||
self.args.half &= device.type != 'cpu' # half precision only supported on CUDA
|
||||
model = AutoBackend(model, device=device, dnn=self.args.dnn, fp16=self.args.half) # NOTE: not passing data
|
||||
stride, pt = model.stride, model.pt
|
||||
imgsz = check_img_size(self.args.img_size, s=stride) # check image size
|
||||
imgsz = check_imgsz(self.args.imgsz, s=stride) # check image size
|
||||
|
||||
# Dataloader
|
||||
bs = 1 # batch_size
|
||||
if webcam:
|
||||
self.view_img = check_imshow(warn=True)
|
||||
self.dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=self.args.vid_stride)
|
||||
self.dataset = LoadStreams(source, imgsz=imgsz, stride=stride, auto=pt, vid_stride=self.args.vid_stride)
|
||||
bs = len(self.dataset)
|
||||
elif screenshot:
|
||||
self.dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
||||
self.dataset = LoadScreenshots(source, imgsz=imgsz, stride=stride, auto=pt)
|
||||
else:
|
||||
self.dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=self.args.vid_stride)
|
||||
self.dataset = LoadImages(source, imgsz=imgsz, stride=stride, auto=pt, vid_stride=self.args.vid_stride)
|
||||
self.vid_path, self.vid_writer = [None] * bs, [None] * bs
|
||||
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
||||
|
||||
|
@ -12,7 +12,7 @@ from ultralytics.yolo.utils.files import increment_path
|
||||
from ultralytics.yolo.utils.modeling import get_model
|
||||
from ultralytics.yolo.utils.modeling.autobackend import AutoBackend
|
||||
from ultralytics.yolo.utils.ops import Profile
|
||||
from ultralytics.yolo.utils.torch_utils import check_img_size, de_parallel, select_device
|
||||
from ultralytics.yolo.utils.torch_utils import check_imgsz, de_parallel, select_device
|
||||
|
||||
|
||||
class BaseValidator:
|
||||
@ -55,7 +55,7 @@ class BaseValidator:
|
||||
model = AutoBackend(model, device=self.device, dnn=self.args.dnn, fp16=self.args.half)
|
||||
self.model = model
|
||||
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
||||
imgsz = check_img_size(self.args.img_size, s=stride)
|
||||
imgsz = check_imgsz(self.args.imgsz, s=stride)
|
||||
if engine:
|
||||
self.args.batch_size = model.batch_size
|
||||
else:
|
||||
|
Reference in New Issue
Block a user