Replace nosave and noval with save and val (#127)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2023-01-01 17:50:06 +01:00
committed by GitHub
parent 598f17a472
commit 63c7a74691
7 changed files with 74 additions and 77 deletions

View File

@ -104,7 +104,6 @@ class BasePredictor:
def setup(self, source=None, model=None):
# source
source = str(source or self.args.source)
self.save_img = not self.args.nosave and not source.endswith('.txt')
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
@ -168,10 +167,10 @@ class BasePredictor:
p = Path(path)
s += self.write_results(i, preds, (p, im, im0s))
if self.args.view_img:
if self.args.show:
self.show(p)
if self.save_img:
if self.args.save:
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
# Print time (inference-only)
@ -182,7 +181,7 @@ class BasePredictor:
LOGGER.info(
f'Speed: %.1fms pre-process, %.1fms inference, %.1fms postprocess per image at shape {(1, 3, *self.imgsz)}'
% t)
if self.args.save_txt or self.save_img:
if self.args.save_txt or self.args.save:
s = f"\n{len(list(self.save_dir.glob('labels/*.txt')))} labels saved to {self.save_dir / 'labels'}" if self.args.save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")

View File

@ -244,12 +244,12 @@ class BaseTrainer:
for i, batch in pbar:
self.trigger_callbacks("on_train_batch_start")
# update dataloader attributes (optional)
# Update dataloader attributes (optional)
if epoch == (self.epochs - self.args.close_mosaic) and hasattr(self.train_loader.dataset, 'mosaic'):
LOGGER.info("Closing dataloader mosaic")
self.train_loader.dataset.mosaic = False
# warmup
# Warmup
ni = i + nb * epoch
if ni <= nw:
xi = [0, nw] # x interp
@ -261,7 +261,7 @@ class BaseTrainer:
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum])
# forward
# Forward
with torch.cuda.amp.autocast(self.amp):
batch = self.preprocess_batch(batch)
preds = self.model(batch["img"])
@ -271,15 +271,15 @@ class BaseTrainer:
self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \
else self.loss_items
# backward
# Backward
self.scaler.scale(self.loss).backward()
# optimize - https://pytorch.org/docs/master/notes/amp_examples.html
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
if ni - last_opt_step >= self.accumulate:
self.optimizer_step()
last_opt_step = ni
# log
# Log
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
loss_len = self.tloss.shape[0] if len(self.tloss.size()) else 1
losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0)
@ -298,17 +298,17 @@ class BaseTrainer:
self.trigger_callbacks("on_train_epoch_end")
if rank in {-1, 0}:
# validation
# Validation
self.trigger_callbacks('on_val_start')
self.ema.update_attr(self.model, include=['yaml', 'nc', 'args', 'names', 'stride', 'class_weights'])
final_epoch = (epoch + 1 == self.epochs)
if not self.args.noval or final_epoch:
if self.args.val or final_epoch:
self.metrics, self.fitness = self.validate()
self.trigger_callbacks('on_val_end')
self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **lr})
# save model
if (not self.args.nosave) or (epoch + 1 == self.epochs):
# Save model
if self.args.save or (epoch + 1 == self.epochs):
self.save_model()
self.trigger_callbacks('on_model_save')
@ -319,7 +319,7 @@ class BaseTrainer:
# TODO: termination condition
if rank in {-1, 0}:
# do the last evaluation with best.pt
# Do final val with best.pt
self.log(f'\n{epoch - self.start_epoch + 1} epochs completed in '
f'{(time.time() - self.train_time_start) / 3600:.3f} hours.')
self.final_eval()