Replace nosave and noval with save and val (#127)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2023-01-01 17:50:06 +01:00
committed by GitHub
parent 598f17a472
commit 63c7a74691
7 changed files with 74 additions and 77 deletions

View File

@ -1,71 +1,69 @@
# YOLO 🚀 by Ultralytics, GPL-3.0 license
# Default training settings and hyperparameters for medium-augmentation COCO training
# Task and Mode
task: "classify" # choices=['detect', 'segment', 'classify', 'init'] # init is a special case
mode: "train" # choice=['train', 'val', 'predict']
task: "classify" # choices=['detect', 'segment', 'classify', 'init'] # init is a special case. Specify task to run.
mode: "train" # choices=['train', 'val', 'predict'] # mode to run task in.
# Train settings -------------------------------------------------------------------------------------------------------
model: null # i.e. yolov5s.pt, yolo.yaml
data: null # i.e. coco128.yaml
epochs: 100
batch_size: 16
imgsz: 640
nosave: False
cache: False # True/ram, disk or False
device: '' # cuda device, i.e. 0 or 0,1,2,3 or cpu
workers: 8
project: null
name: null
exist_ok: False
pretrained: False
optimizer: 'SGD' # choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
verbose: False
seed: 0
deterministic: True
local_rank: -1
single_cls: False # train multi-class data as single-class
image_weights: False # use weighted image selection for training
rect: False # support rectangular training
cos_lr: False # use cosine LR scheduler
close_mosaic: 10 # disable mosaic for final 10 epochs
resume: False
model: null # i.e. yolov5s.pt, yolo.yaml. Path to model file
data: null # i.e. coco128.yaml. Path to data file
epochs: 100 # number of epochs to train for
batch_size: 16 # number of images per batch
imgsz: 640 # size of input images
save: True # save checkpoints
cache: False # True/ram, disk or False. Use cache for data loading
device: '' # cuda device, i.e. 0 or 0,1,2,3 or cpu. Device to run on
workers: 8 # number of worker threads for data loading
project: null # project name
name: null # experiment name
exist_ok: False # whether to overwrite existing experiment
pretrained: False # whether to use a pretrained model
optimizer: 'SGD' # optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
verbose: False # whether to print verbose output
seed: 0 # random seed for reproducibility
deterministic: True # whether to enable deterministic mode
local_rank: -1 # local rank for distributed training
single_cls: False # train multi-class data as single-class
image_weights: False # use weighted image selection for training
rect: False # support rectangular training
cos_lr: False # use cosine learning rate scheduler
close_mosaic: 10 # disable mosaic augmentation for final 10 epochs
resume: False # resume training from last checkpoint
# Segmentation
overlap_mask: True # masks overlap
mask_ratio: 4 # mask downsample ratio
overlap_mask: True # masks should overlap during training
mask_ratio: 4 # mask downsample ratio
# Classification
dropout: False # use dropout
dropout: False # use dropout regularization
# Val/Test settings ----------------------------------------------------------------------------------------------------
noval: False
save_json: False
save_hybrid: False
conf_thres: 0.001
iou_thres: 0.7
max_det: 300
half: False
dnn: False # use OpenCV DNN for ONNX inference
plots: True
val: True # validate/test during training
save_json: False # save results to JSON file
save_hybrid: False # save hybrid version of labels (labels + additional predictions)
conf_thres: 0.001 # object confidence threshold for detection
iou_thres: 0.7 # intersection over union threshold for NMS
max_det: 300 # maximum number of detections per image
half: False # use half precision (FP16)
dnn: False # use OpenCV DNN for ONNX inference
plots: True # show plots during training
# Prediction settings --------------------------------------------------------------------------------------------------
source: "ultralytics/assets/"
view_img: False
save_txt: False
save_conf: False
save_crop: False
hide_labels: False # hide labels
hide_conf: False
vid_stride: 1 # video frame-rate stride
line_thickness: 3 # bounding box thickness (pixels)
update: False # Update all models
visualize: False
augment: False
agnostic_nms: False # class-agnostic NMS
retina_masks: False
source: "ultralytics/assets" # source directory for images or videos
show: False # show results if possible
save_txt: False # save results as .txt file
save_conf: False # save results with confidence scores
save_crop: False # save cropped images with results
hide_labels: False # hide labels
hide_conf: False # hide confidence scores
vid_stride: 1 # video frame-rate stride
line_thickness: 3 # bounding box thickness (pixels)
update: False # Update all models
visualize: False # visualize results
augment: False # apply data augmentation to images
agnostic_nms: False # class-agnostic NMS
retina_masks: False # use retina masks for object detection
# Export settings ------------------------------------------------------------------------------------------------------
format: torchscript
format: torchscript # format to export to
keras: False # use Keras
optimize: False # TorchScript: optimize for mobile
int8: False # CoreML/TF INT8 quantization
@ -103,11 +101,11 @@ mosaic: 1.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)
# For debugging. Don't change
v5loader: False
# Hydra configs --------------------------------------------------------------------------------------------------------
hydra:
output_subdir: null # disable hydra directory creation
run:
dir: .
# Debug, do not modify -------------------------------------------------------------------------------------------------
v5loader: False # use legacy YOLOv5 dataloader