ultralytics 8.0.136 refactor and simplify package (#3748)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Laughing
2023-07-16 23:47:45 +08:00
committed by GitHub
parent 8ebe94d1e9
commit 620f3eb218
383 changed files with 4213 additions and 4646 deletions

View File

@ -1,421 +1,10 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import re
import shutil
import importlib
import sys
from difflib import get_close_matches
from pathlib import Path
from types import SimpleNamespace
from typing import Dict, List, Union
from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_PATH, LOGGER, ROOT, USER_CONFIG_DIR,
IterableSimpleNamespace, __version__, checks, colorstr, deprecation_warn,
get_settings, yaml_load, yaml_print)
from ultralytics.utils import LOGGER
# Define valid tasks and modes
MODES = 'train', 'val', 'predict', 'export', 'track', 'benchmark'
TASKS = 'detect', 'segment', 'classify', 'pose'
TASK2DATA = {'detect': 'coco8.yaml', 'segment': 'coco8-seg.yaml', 'classify': 'imagenet100', 'pose': 'coco8-pose.yaml'}
TASK2MODEL = {
'detect': 'yolov8n.pt',
'segment': 'yolov8n-seg.pt',
'classify': 'yolov8n-cls.pt',
'pose': 'yolov8n-pose.pt'}
TASK2METRIC = {
'detect': 'metrics/mAP50-95(B)',
'segment': 'metrics/mAP50-95(M)',
'classify': 'metrics/accuracy_top1',
'pose': 'metrics/mAP50-95(P)'}
# Set modules in sys.modules under their old name
sys.modules['ultralytics.yolo.cfg'] = importlib.import_module('ultralytics.cfg')
CLI_HELP_MSG = \
f"""
Arguments received: {str(['yolo'] + sys.argv[1:])}. Ultralytics 'yolo' commands use the following syntax:
yolo TASK MODE ARGS
Where TASK (optional) is one of {TASKS}
MODE (required) is one of {MODES}
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
2. Predict a YouTube video using a pretrained segmentation model at image size 320:
yolo predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320
3. Val a pretrained detection model at batch-size 1 and image size 640:
yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
5. Run special commands:
yolo help
yolo checks
yolo version
yolo settings
yolo copy-cfg
yolo cfg
Docs: https://docs.ultralytics.com
Community: https://community.ultralytics.com
GitHub: https://github.com/ultralytics/ultralytics
"""
# Define keys for arg type checks
CFG_FLOAT_KEYS = 'warmup_epochs', 'box', 'cls', 'dfl', 'degrees', 'shear'
CFG_FRACTION_KEYS = ('dropout', 'iou', 'lr0', 'lrf', 'momentum', 'weight_decay', 'warmup_momentum', 'warmup_bias_lr',
'label_smoothing', 'hsv_h', 'hsv_s', 'hsv_v', 'translate', 'scale', 'perspective', 'flipud',
'fliplr', 'mosaic', 'mixup', 'copy_paste', 'conf', 'iou', 'fraction') # fraction floats 0.0 - 1.0
CFG_INT_KEYS = ('epochs', 'patience', 'batch', 'workers', 'seed', 'close_mosaic', 'mask_ratio', 'max_det', 'vid_stride',
'line_width', 'workspace', 'nbs', 'save_period')
CFG_BOOL_KEYS = ('save', 'exist_ok', 'verbose', 'deterministic', 'single_cls', 'rect', 'cos_lr', 'overlap_mask', 'val',
'save_json', 'save_hybrid', 'half', 'dnn', 'plots', 'show', 'save_txt', 'save_conf', 'save_crop',
'show_labels', 'show_conf', 'visualize', 'augment', 'agnostic_nms', 'retina_masks', 'boxes', 'keras',
'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'profile')
def cfg2dict(cfg):
"""
Convert a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object.
Args:
cfg (str | Path | SimpleNamespace): Configuration object to be converted to a dictionary.
Returns:
cfg (dict): Configuration object in dictionary format.
"""
if isinstance(cfg, (str, Path)):
cfg = yaml_load(cfg) # load dict
elif isinstance(cfg, SimpleNamespace):
cfg = vars(cfg) # convert to dict
return cfg
def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, overrides: Dict = None):
"""
Load and merge configuration data from a file or dictionary.
Args:
cfg (str | Path | Dict | SimpleNamespace): Configuration data.
overrides (str | Dict | optional): Overrides in the form of a file name or a dictionary. Default is None.
Returns:
(SimpleNamespace): Training arguments namespace.
"""
cfg = cfg2dict(cfg)
# Merge overrides
if overrides:
overrides = cfg2dict(overrides)
check_cfg_mismatch(cfg, overrides)
cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides)
# Special handling for numeric project/name
for k in 'project', 'name':
if k in cfg and isinstance(cfg[k], (int, float)):
cfg[k] = str(cfg[k])
if cfg.get('name') == 'model': # assign model to 'name' arg
cfg['name'] = cfg.get('model', '').split('.')[0]
LOGGER.warning(f"WARNING ⚠️ 'name=model' automatically updated to 'name={cfg['name']}'.")
# Type and Value checks
for k, v in cfg.items():
if v is not None: # None values may be from optional args
if k in CFG_FLOAT_KEYS and not isinstance(v, (int, float)):
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')")
elif k in CFG_FRACTION_KEYS:
if not isinstance(v, (int, float)):
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')")
if not (0.0 <= v <= 1.0):
raise ValueError(f"'{k}={v}' is an invalid value. "
f"Valid '{k}' values are between 0.0 and 1.0.")
elif k in CFG_INT_KEYS and not isinstance(v, int):
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"'{k}' must be an int (i.e. '{k}=8')")
elif k in CFG_BOOL_KEYS and not isinstance(v, bool):
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"'{k}' must be a bool (i.e. '{k}=True' or '{k}=False')")
# Return instance
return IterableSimpleNamespace(**cfg)
def _handle_deprecation(custom):
"""
Hardcoded function to handle deprecated config keys
"""
for key in custom.copy().keys():
if key == 'hide_labels':
deprecation_warn(key, 'show_labels')
custom['show_labels'] = custom.pop('hide_labels') == 'False'
if key == 'hide_conf':
deprecation_warn(key, 'show_conf')
custom['show_conf'] = custom.pop('hide_conf') == 'False'
if key == 'line_thickness':
deprecation_warn(key, 'line_width')
custom['line_width'] = custom.pop('line_thickness')
return custom
def check_cfg_mismatch(base: Dict, custom: Dict, e=None):
"""
This function checks for any mismatched keys between a custom configuration list and a base configuration list.
If any mismatched keys are found, the function prints out similar keys from the base list and exits the program.
Args:
custom (dict): a dictionary of custom configuration options
base (dict): a dictionary of base configuration options
"""
custom = _handle_deprecation(custom)
base, custom = (set(x.keys()) for x in (base, custom))
mismatched = [x for x in custom if x not in base]
if mismatched:
string = ''
for x in mismatched:
matches = get_close_matches(x, base) # key list
matches = [f'{k}={DEFAULT_CFG_DICT[k]}' if DEFAULT_CFG_DICT.get(k) is not None else k for k in matches]
match_str = f'Similar arguments are i.e. {matches}.' if matches else ''
string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n"
raise SyntaxError(string + CLI_HELP_MSG) from e
def merge_equals_args(args: List[str]) -> List[str]:
"""
Merges arguments around isolated '=' args in a list of strings.
The function considers cases where the first argument ends with '=' or the second starts with '=',
as well as when the middle one is an equals sign.
Args:
args (List[str]): A list of strings where each element is an argument.
Returns:
List[str]: A list of strings where the arguments around isolated '=' are merged.
"""
new_args = []
for i, arg in enumerate(args):
if arg == '=' and 0 < i < len(args) - 1: # merge ['arg', '=', 'val']
new_args[-1] += f'={args[i + 1]}'
del args[i + 1]
elif arg.endswith('=') and i < len(args) - 1 and '=' not in args[i + 1]: # merge ['arg=', 'val']
new_args.append(f'{arg}{args[i + 1]}')
del args[i + 1]
elif arg.startswith('=') and i > 0: # merge ['arg', '=val']
new_args[-1] += arg
else:
new_args.append(arg)
return new_args
def handle_yolo_hub(args: List[str]) -> None:
"""
Handle Ultralytics HUB command-line interface (CLI) commands.
This function processes Ultralytics HUB CLI commands such as login and logout.
It should be called when executing a script with arguments related to HUB authentication.
Args:
args (List[str]): A list of command line arguments
Example:
python my_script.py hub login your_api_key
"""
from ultralytics import hub
if args[0] == 'login':
key = args[1] if len(args) > 1 else ''
# Log in to Ultralytics HUB using the provided API key
hub.login(key)
elif args[0] == 'logout':
# Log out from Ultralytics HUB
hub.logout()
def handle_yolo_settings(args: List[str]) -> None:
"""
Handle YOLO settings command-line interface (CLI) commands.
This function processes YOLO settings CLI commands such as reset.
It should be called when executing a script with arguments related to YOLO settings management.
Args:
args (List[str]): A list of command line arguments for YOLO settings management.
Example:
python my_script.py yolo settings reset
"""
path = USER_CONFIG_DIR / 'settings.yaml' # get SETTINGS YAML file path
if any(args) and args[0] == 'reset':
path.unlink() # delete the settings file
get_settings() # create new settings
LOGGER.info('Settings reset successfully') # inform the user that settings have been reset
yaml_print(path) # print the current settings
def entrypoint(debug=''):
"""
This function is the ultralytics package entrypoint, it's responsible for parsing the command line arguments passed
to the package.
This function allows for:
- passing mandatory YOLO args as a list of strings
- specifying the task to be performed, either 'detect', 'segment' or 'classify'
- specifying the mode, either 'train', 'val', 'test', or 'predict'
- running special modes like 'checks'
- passing overrides to the package's configuration
It uses the package's default cfg and initializes it using the passed overrides.
Then it calls the CLI function with the composed cfg
"""
args = (debug.split(' ') if debug else sys.argv)[1:]
if not args: # no arguments passed
LOGGER.info(CLI_HELP_MSG)
return
special = {
'help': lambda: LOGGER.info(CLI_HELP_MSG),
'checks': checks.check_yolo,
'version': lambda: LOGGER.info(__version__),
'settings': lambda: handle_yolo_settings(args[1:]),
'cfg': lambda: yaml_print(DEFAULT_CFG_PATH),
'hub': lambda: handle_yolo_hub(args[1:]),
'login': lambda: handle_yolo_hub(args),
'copy-cfg': copy_default_cfg}
full_args_dict = {**DEFAULT_CFG_DICT, **{k: None for k in TASKS}, **{k: None for k in MODES}, **special}
# Define common mis-uses of special commands, i.e. -h, -help, --help
special.update({k[0]: v for k, v in special.items()}) # singular
special.update({k[:-1]: v for k, v in special.items() if len(k) > 1 and k.endswith('s')}) # singular
special = {**special, **{f'-{k}': v for k, v in special.items()}, **{f'--{k}': v for k, v in special.items()}}
overrides = {} # basic overrides, i.e. imgsz=320
for a in merge_equals_args(args): # merge spaces around '=' sign
if a.startswith('--'):
LOGGER.warning(f"WARNING ⚠️ '{a}' does not require leading dashes '--', updating to '{a[2:]}'.")
a = a[2:]
if a.endswith(','):
LOGGER.warning(f"WARNING ⚠️ '{a}' does not require trailing comma ',', updating to '{a[:-1]}'.")
a = a[:-1]
if '=' in a:
try:
re.sub(r' *= *', '=', a) # remove spaces around equals sign
k, v = a.split('=', 1) # split on first '=' sign
assert v, f"missing '{k}' value"
if k == 'cfg': # custom.yaml passed
LOGGER.info(f'Overriding {DEFAULT_CFG_PATH} with {v}')
overrides = {k: val for k, val in yaml_load(checks.check_yaml(v)).items() if k != 'cfg'}
else:
if v.lower() == 'none':
v = None
elif v.lower() == 'true':
v = True
elif v.lower() == 'false':
v = False
else:
with contextlib.suppress(Exception):
v = eval(v)
overrides[k] = v
except (NameError, SyntaxError, ValueError, AssertionError) as e:
check_cfg_mismatch(full_args_dict, {a: ''}, e)
elif a in TASKS:
overrides['task'] = a
elif a in MODES:
overrides['mode'] = a
elif a.lower() in special:
special[a.lower()]()
return
elif a in DEFAULT_CFG_DICT and isinstance(DEFAULT_CFG_DICT[a], bool):
overrides[a] = True # auto-True for default bool args, i.e. 'yolo show' sets show=True
elif a in DEFAULT_CFG_DICT:
raise SyntaxError(f"'{colorstr('red', 'bold', a)}' is a valid YOLO argument but is missing an '=' sign "
f"to set its value, i.e. try '{a}={DEFAULT_CFG_DICT[a]}'\n{CLI_HELP_MSG}")
else:
check_cfg_mismatch(full_args_dict, {a: ''})
# Check keys
check_cfg_mismatch(full_args_dict, overrides)
# Mode
mode = overrides.get('mode', None)
if mode is None:
mode = DEFAULT_CFG.mode or 'predict'
LOGGER.warning(f"WARNING ⚠️ 'mode' is missing. Valid modes are {MODES}. Using default 'mode={mode}'.")
elif mode not in MODES:
if mode not in ('checks', checks):
raise ValueError(f"Invalid 'mode={mode}'. Valid modes are {MODES}.\n{CLI_HELP_MSG}")
LOGGER.warning("WARNING ⚠️ 'yolo mode=checks' is deprecated. Use 'yolo checks' instead.")
checks.check_yolo()
return
# Task
task = overrides.pop('task', None)
if task:
if task not in TASKS:
raise ValueError(f"Invalid 'task={task}'. Valid tasks are {TASKS}.\n{CLI_HELP_MSG}")
if 'model' not in overrides:
overrides['model'] = TASK2MODEL[task]
# Model
model = overrides.pop('model', DEFAULT_CFG.model)
if model is None:
model = 'yolov8n.pt'
LOGGER.warning(f"WARNING ⚠️ 'model' is missing. Using default 'model={model}'.")
overrides['model'] = model
if 'rtdetr' in model.lower(): # guess architecture
from ultralytics import RTDETR
model = RTDETR(model) # no task argument
elif 'sam' in model.lower():
from ultralytics import SAM
model = SAM(model)
else:
from ultralytics import YOLO
model = YOLO(model, task=task)
if isinstance(overrides.get('pretrained'), str):
model.load(overrides['pretrained'])
# Task Update
if task != model.task:
if task:
LOGGER.warning(f"WARNING ⚠️ conflicting 'task={task}' passed with 'task={model.task}' model. "
f"Ignoring 'task={task}' and updating to 'task={model.task}' to match model.")
task = model.task
# Mode
if mode in ('predict', 'track') and 'source' not in overrides:
overrides['source'] = DEFAULT_CFG.source or ROOT / 'assets' if (ROOT / 'assets').exists() \
else 'https://ultralytics.com/images/bus.jpg'
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using default 'source={overrides['source']}'.")
elif mode in ('train', 'val'):
if 'data' not in overrides:
overrides['data'] = TASK2DATA.get(task or DEFAULT_CFG.task, DEFAULT_CFG.data)
LOGGER.warning(f"WARNING ⚠️ 'data' is missing. Using default 'data={overrides['data']}'.")
elif mode == 'export':
if 'format' not in overrides:
overrides['format'] = DEFAULT_CFG.format or 'torchscript'
LOGGER.warning(f"WARNING ⚠️ 'format' is missing. Using default 'format={overrides['format']}'.")
# Run command in python
# getattr(model, mode)(**vars(get_cfg(overrides=overrides))) # default args using default.yaml
getattr(model, mode)(**overrides) # default args from model
# Special modes --------------------------------------------------------------------------------------------------------
def copy_default_cfg():
"""Copy and create a new default configuration file with '_copy' appended to its name."""
new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace('.yaml', '_copy.yaml')
shutil.copy2(DEFAULT_CFG_PATH, new_file)
LOGGER.info(f'{DEFAULT_CFG_PATH} copied to {new_file}\n'
f"Example YOLO command with this new custom cfg:\n yolo cfg='{new_file}' imgsz=320 batch=8")
if __name__ == '__main__':
# Example Usage: entrypoint(debug='yolo predict model=yolov8n.pt')
entrypoint(debug='')
LOGGER.warning("WARNING ⚠️ 'ultralytics.yolo.cfg' is deprecated since '8.0.136' and will be removed in '8.1.0'. "
"Please use 'ultralytics.cfg' instead.")

View File

@ -1,114 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default training settings and hyperparameters for medium-augmentation COCO training
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
# Train settings -------------------------------------------------------------------------------------------------------
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
data: # (str, optional) path to data file, i.e. coco128.yaml
epochs: 100 # (int) number of epochs to train for
patience: 50 # (int) epochs to wait for no observable improvement for early stopping of training
batch: 16 # (int) number of images per batch (-1 for AutoBatch)
imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
save: True # (bool) save train checkpoints and predict results
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
cache: False # (bool) True/ram, disk or False. Use cache for data loading
device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
project: # (str, optional) project name
name: # (str, optional) experiment name, results saved to 'project/name' directory
exist_ok: False # (bool) whether to overwrite existing experiment
pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
verbose: True # (bool) whether to print verbose output
seed: 0 # (int) random seed for reproducibility
deterministic: True # (bool) whether to enable deterministic mode
single_cls: False # (bool) train multi-class data as single-class
rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
cos_lr: False # (bool) use cosine learning rate scheduler
close_mosaic: 10 # (int) disable mosaic augmentation for final epochs
resume: False # (bool) resume training from last checkpoint
amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
# Segmentation
overlap_mask: True # (bool) masks should overlap during training (segment train only)
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
# Classification
dropout: 0.0 # (float) use dropout regularization (classify train only)
# Val/Test settings ----------------------------------------------------------------------------------------------------
val: True # (bool) validate/test during training
split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
save_json: False # (bool) save results to JSON file
save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
max_det: 300 # (int) maximum number of detections per image
half: False # (bool) use half precision (FP16)
dnn: False # (bool) use OpenCV DNN for ONNX inference
plots: True # (bool) save plots during train/val
# Prediction settings --------------------------------------------------------------------------------------------------
source: # (str, optional) source directory for images or videos
show: False # (bool) show results if possible
save_txt: False # (bool) save results as .txt file
save_conf: False # (bool) save results with confidence scores
save_crop: False # (bool) save cropped images with results
show_labels: True # (bool) show object labels in plots
show_conf: True # (bool) show object confidence scores in plots
vid_stride: 1 # (int) video frame-rate stride
line_width: # (int, optional) line width of the bounding boxes, auto if missing
visualize: False # (bool) visualize model features
augment: False # (bool) apply image augmentation to prediction sources
agnostic_nms: False # (bool) class-agnostic NMS
classes: # (int | list[int], optional) filter results by class, i.e. class=0, or class=[0,2,3]
retina_masks: False # (bool) use high-resolution segmentation masks
boxes: True # (bool) Show boxes in segmentation predictions
# Export settings ------------------------------------------------------------------------------------------------------
format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
keras: False # (bool) use Kera=s
optimize: False # (bool) TorchScript: optimize for mobile
int8: False # (bool) CoreML/TF INT8 quantization
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
simplify: False # (bool) ONNX: simplify model
opset: # (int, optional) ONNX: opset version
workspace: 4 # (int) TensorRT: workspace size (GB)
nms: False # (bool) CoreML: add NMS
# Hyperparameters ------------------------------------------------------------------------------------------------------
lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
lrf: 0.01 # (float) final learning rate (lr0 * lrf)
momentum: 0.937 # (float) SGD momentum/Adam beta1
weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
warmup_momentum: 0.8 # (float) warmup initial momentum
warmup_bias_lr: 0.1 # (float) warmup initial bias lr
box: 7.5 # (float) box loss gain
cls: 0.5 # (float) cls loss gain (scale with pixels)
dfl: 1.5 # (float) dfl loss gain
pose: 12.0 # (float) pose loss gain
kobj: 1.0 # (float) keypoint obj loss gain
label_smoothing: 0.0 # (float) label smoothing (fraction)
nbs: 64 # (int) nominal batch size
hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
degrees: 0.0 # (float) image rotation (+/- deg)
translate: 0.1 # (float) image translation (+/- fraction)
scale: 0.5 # (float) image scale (+/- gain)
shear: 0.0 # (float) image shear (+/- deg)
perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # (float) image flip up-down (probability)
fliplr: 0.5 # (float) image flip left-right (probability)
mosaic: 1.0 # (float) image mosaic (probability)
mixup: 0.0 # (float) image mixup (probability)
copy_paste: 0.0 # (float) segment copy-paste (probability)
# Custom config.yaml ---------------------------------------------------------------------------------------------------
cfg: # (str, optional) for overriding defaults.yaml
# Tracker settings ------------------------------------------------------------------------------------------------------
tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]

View File

@ -1,9 +1,17 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import importlib
import sys
from .base import BaseDataset
from .build import build_dataloader, build_yolo_dataset, load_inference_source
from .dataset import ClassificationDataset, SemanticDataset, YOLODataset
from .dataset_wrappers import MixAndRectDataset
from ultralytics.utils import LOGGER
__all__ = ('BaseDataset', 'ClassificationDataset', 'MixAndRectDataset', 'SemanticDataset', 'YOLODataset',
'build_yolo_dataset', 'build_dataloader', 'load_inference_source')
# Set modules in sys.modules under their old name
sys.modules['ultralytics.yolo.data'] = importlib.import_module('ultralytics.data')
# This is for updating old cls models, or the way in following warning won't work.
sys.modules['ultralytics.yolo.data.augment'] = importlib.import_module('ultralytics.data.augment')
DATA_WARNING = """WARNING ⚠️ 'ultralytics.yolo.data' is deprecated since '8.0.136' and will be removed in '8.1.0'. Please use 'ultralytics.data' instead.
Note this warning may be related to loading older models. You can update your model to current structure with:
import torch
ckpt = torch.load("model.pt") # applies to both official and custom models
torch.save(ckpt, "updated-model.pt")
"""
LOGGER.warning(DATA_WARNING)

View File

@ -1,39 +0,0 @@
from pathlib import Path
from ultralytics import SAM, YOLO
def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='', output_dir=None):
"""
Automatically annotates images using a YOLO object detection model and a SAM segmentation model.
Args:
data (str): Path to a folder containing images to be annotated.
det_model (str, optional): Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'.
sam_model (str, optional): Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'.
device (str, optional): Device to run the models on. Defaults to an empty string (CPU or GPU, if available).
output_dir (str | None | optional): Directory to save the annotated results.
Defaults to a 'labels' folder in the same directory as 'data'.
"""
det_model = YOLO(det_model)
sam_model = SAM(sam_model)
if not output_dir:
output_dir = Path(str(data)).parent / 'labels'
Path(output_dir).mkdir(exist_ok=True, parents=True)
det_results = det_model(data, stream=True, device=device)
for result in det_results:
boxes = result.boxes.xyxy # Boxes object for bbox outputs
class_ids = result.boxes.cls.int().tolist() # noqa
if len(class_ids):
sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device)
segments = sam_results[0].masks.xyn # noqa
with open(str(Path(output_dir) / Path(result.path).stem) + '.txt', 'w') as f:
for i in range(len(segments)):
s = segments[i]
if len(s) == 0:
continue
segment = map(str, segments[i].reshape(-1).tolist())
f.write(f'{class_ids[i]} ' + ' '.join(segment) + '\n')

View File

@ -1,905 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import math
import random
from copy import deepcopy
import cv2
import numpy as np
import torch
import torchvision.transforms as T
from ..utils import LOGGER, colorstr
from ..utils.checks import check_version
from ..utils.instance import Instances
from ..utils.metrics import bbox_ioa
from ..utils.ops import segment2box
from .utils import polygons2masks, polygons2masks_overlap
POSE_FLIPLR_INDEX = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
# TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic
class BaseTransform:
def __init__(self) -> None:
pass
def apply_image(self, labels):
"""Applies image transformation to labels."""
pass
def apply_instances(self, labels):
"""Applies transformations to input 'labels' and returns object instances."""
pass
def apply_semantic(self, labels):
"""Applies semantic segmentation to an image."""
pass
def __call__(self, labels):
"""Applies label transformations to an image, instances and semantic masks."""
self.apply_image(labels)
self.apply_instances(labels)
self.apply_semantic(labels)
class Compose:
def __init__(self, transforms):
"""Initializes the Compose object with a list of transforms."""
self.transforms = transforms
def __call__(self, data):
"""Applies a series of transformations to input data."""
for t in self.transforms:
data = t(data)
return data
def append(self, transform):
"""Appends a new transform to the existing list of transforms."""
self.transforms.append(transform)
def tolist(self):
"""Converts list of transforms to a standard Python list."""
return self.transforms
def __repr__(self):
"""Return string representation of object."""
format_string = f'{self.__class__.__name__}('
for t in self.transforms:
format_string += '\n'
format_string += f' {t}'
format_string += '\n)'
return format_string
class BaseMixTransform:
"""This implementation is from mmyolo."""
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
self.dataset = dataset
self.pre_transform = pre_transform
self.p = p
def __call__(self, labels):
"""Applies pre-processing transforms and mixup/mosaic transforms to labels data."""
if random.uniform(0, 1) > self.p:
return labels
# Get index of one or three other images
indexes = self.get_indexes()
if isinstance(indexes, int):
indexes = [indexes]
# Get images information will be used for Mosaic or MixUp
mix_labels = [self.dataset.get_image_and_label(i) for i in indexes]
if self.pre_transform is not None:
for i, data in enumerate(mix_labels):
mix_labels[i] = self.pre_transform(data)
labels['mix_labels'] = mix_labels
# Mosaic or MixUp
labels = self._mix_transform(labels)
labels.pop('mix_labels', None)
return labels
def _mix_transform(self, labels):
"""Applies MixUp or Mosaic augmentation to the label dictionary."""
raise NotImplementedError
def get_indexes(self):
"""Gets a list of shuffled indexes for mosaic augmentation."""
raise NotImplementedError
class Mosaic(BaseMixTransform):
"""
Mosaic augmentation.
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image.
The augmentation is applied to a dataset with a given probability.
Attributes:
dataset: The dataset on which the mosaic augmentation is applied.
imgsz (int, optional): Image size (height and width) after mosaic pipeline of a single image. Default to 640.
p (float, optional): Probability of applying the mosaic augmentation. Must be in the range 0-1. Default to 1.0.
n (int, optional): The grid size, either 4 (for 2x2) or 9 (for 3x3).
"""
def __init__(self, dataset, imgsz=640, p=1.0, n=4):
"""Initializes the object with a dataset, image size, probability, and border."""
assert 0 <= p <= 1.0, f'The probability should be in range [0, 1], but got {p}.'
assert n in (4, 9), 'grid must be equal to 4 or 9.'
super().__init__(dataset=dataset, p=p)
self.dataset = dataset
self.imgsz = imgsz
self.border = (-imgsz // 2, -imgsz // 2) # width, height
self.n = n
def get_indexes(self, buffer=True):
"""Return a list of random indexes from the dataset."""
if buffer: # select images from buffer
return random.choices(list(self.dataset.buffer), k=self.n - 1)
else: # select any images
return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)]
def _mix_transform(self, labels):
"""Apply mixup transformation to the input image and labels."""
assert labels.get('rect_shape', None) is None, 'rect and mosaic are mutually exclusive.'
assert len(labels.get('mix_labels', [])), 'There are no other images for mosaic augment.'
return self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels)
def _mosaic4(self, labels):
"""Create a 2x2 image mosaic."""
mosaic_labels = []
s = self.imgsz
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y
for i in range(4):
labels_patch = labels if i == 0 else labels['mix_labels'][i - 1]
# Load image
img = labels_patch['img']
h, w = labels_patch.pop('resized_shape')
# Place img in img4
if i == 0: # top left
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
elif i == 1: # top right
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
padw = x1a - x1b
padh = y1a - y1b
labels_patch = self._update_labels(labels_patch, padw, padh)
mosaic_labels.append(labels_patch)
final_labels = self._cat_labels(mosaic_labels)
final_labels['img'] = img4
return final_labels
def _mosaic9(self, labels):
"""Create a 3x3 image mosaic."""
mosaic_labels = []
s = self.imgsz
hp, wp = -1, -1 # height, width previous
for i in range(9):
labels_patch = labels if i == 0 else labels['mix_labels'][i - 1]
# Load image
img = labels_patch['img']
h, w = labels_patch.pop('resized_shape')
# Place img in img9
if i == 0: # center
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
h0, w0 = h, w
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
elif i == 1: # top
c = s, s - h, s + w, s
elif i == 2: # top right
c = s + wp, s - h, s + wp + w, s
elif i == 3: # right
c = s + w0, s, s + w0 + w, s + h
elif i == 4: # bottom right
c = s + w0, s + hp, s + w0 + w, s + hp + h
elif i == 5: # bottom
c = s + w0 - w, s + h0, s + w0, s + h0 + h
elif i == 6: # bottom left
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
elif i == 7: # left
c = s - w, s + h0 - h, s, s + h0
elif i == 8: # top left
c = s - w, s + h0 - hp - h, s, s + h0 - hp
padw, padh = c[:2]
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
# Image
img9[y1:y2, x1:x2] = img[y1 - padh:, x1 - padw:] # img9[ymin:ymax, xmin:xmax]
hp, wp = h, w # height, width previous for next iteration
# Labels assuming imgsz*2 mosaic size
labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1])
mosaic_labels.append(labels_patch)
final_labels = self._cat_labels(mosaic_labels)
final_labels['img'] = img9[-self.border[0]:self.border[0], -self.border[1]:self.border[1]]
return final_labels
@staticmethod
def _update_labels(labels, padw, padh):
"""Update labels."""
nh, nw = labels['img'].shape[:2]
labels['instances'].convert_bbox(format='xyxy')
labels['instances'].denormalize(nw, nh)
labels['instances'].add_padding(padw, padh)
return labels
def _cat_labels(self, mosaic_labels):
"""Return labels with mosaic border instances clipped."""
if len(mosaic_labels) == 0:
return {}
cls = []
instances = []
imgsz = self.imgsz * 2 # mosaic imgsz
for labels in mosaic_labels:
cls.append(labels['cls'])
instances.append(labels['instances'])
final_labels = {
'im_file': mosaic_labels[0]['im_file'],
'ori_shape': mosaic_labels[0]['ori_shape'],
'resized_shape': (imgsz, imgsz),
'cls': np.concatenate(cls, 0),
'instances': Instances.concatenate(instances, axis=0),
'mosaic_border': self.border} # final_labels
final_labels['instances'].clip(imgsz, imgsz)
good = final_labels['instances'].remove_zero_area_boxes()
final_labels['cls'] = final_labels['cls'][good]
return final_labels
class MixUp(BaseMixTransform):
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)
def get_indexes(self):
"""Get a random index from the dataset."""
return random.randint(0, len(self.dataset) - 1)
def _mix_transform(self, labels):
"""Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf."""
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
labels2 = labels['mix_labels'][0]
labels['img'] = (labels['img'] * r + labels2['img'] * (1 - r)).astype(np.uint8)
labels['instances'] = Instances.concatenate([labels['instances'], labels2['instances']], axis=0)
labels['cls'] = np.concatenate([labels['cls'], labels2['cls']], 0)
return labels
class RandomPerspective:
def __init__(self,
degrees=0.0,
translate=0.1,
scale=0.5,
shear=0.0,
perspective=0.0,
border=(0, 0),
pre_transform=None):
self.degrees = degrees
self.translate = translate
self.scale = scale
self.shear = shear
self.perspective = perspective
# Mosaic border
self.border = border
self.pre_transform = pre_transform
def affine_transform(self, img, border):
"""Center."""
C = np.eye(3, dtype=np.float32)
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
# Perspective
P = np.eye(3, dtype=np.float32)
P[2, 0] = random.uniform(-self.perspective, self.perspective) # x perspective (about y)
P[2, 1] = random.uniform(-self.perspective, self.perspective) # y perspective (about x)
# Rotation and Scale
R = np.eye(3, dtype=np.float32)
a = random.uniform(-self.degrees, self.degrees)
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
s = random.uniform(1 - self.scale, 1 + self.scale)
# s = 2 ** random.uniform(-scale, scale)
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
# Shear
S = np.eye(3, dtype=np.float32)
S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # x shear (deg)
S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # y shear (deg)
# Translation
T = np.eye(3, dtype=np.float32)
T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] # x translation (pixels)
T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] # y translation (pixels)
# Combined rotation matrix
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
# Affine image
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
if self.perspective:
img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114))
else: # affine
img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114))
return img, M, s
def apply_bboxes(self, bboxes, M):
"""
Apply affine to bboxes only.
Args:
bboxes (ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4).
M (ndarray): affine matrix.
Returns:
new_bboxes (ndarray): bboxes after affine, [num_bboxes, 4].
"""
n = len(bboxes)
if n == 0:
return bboxes
xy = np.ones((n * 4, 3), dtype=bboxes.dtype)
xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
xy = xy @ M.T # transform
xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
# Create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T
def apply_segments(self, segments, M):
"""
Apply affine to segments and generate new bboxes from segments.
Args:
segments (ndarray): list of segments, [num_samples, 500, 2].
M (ndarray): affine matrix.
Returns:
new_segments (ndarray): list of segments after affine, [num_samples, 500, 2].
new_bboxes (ndarray): bboxes after affine, [N, 4].
"""
n, num = segments.shape[:2]
if n == 0:
return [], segments
xy = np.ones((n * num, 3), dtype=segments.dtype)
segments = segments.reshape(-1, 2)
xy[:, :2] = segments
xy = xy @ M.T # transform
xy = xy[:, :2] / xy[:, 2:3]
segments = xy.reshape(n, -1, 2)
bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0)
return bboxes, segments
def apply_keypoints(self, keypoints, M):
"""
Apply affine to keypoints.
Args:
keypoints (ndarray): keypoints, [N, 17, 3].
M (ndarray): affine matrix.
Return:
new_keypoints (ndarray): keypoints after affine, [N, 17, 3].
"""
n, nkpt = keypoints.shape[:2]
if n == 0:
return keypoints
xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype)
visible = keypoints[..., 2].reshape(n * nkpt, 1)
xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2)
xy = xy @ M.T # transform
xy = xy[:, :2] / xy[:, 2:3] # perspective rescale or affine
out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1])
visible[out_mask] = 0
return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3)
def __call__(self, labels):
"""
Affine images and targets.
Args:
labels (dict): a dict of `bboxes`, `segments`, `keypoints`.
"""
if self.pre_transform and 'mosaic_border' not in labels:
labels = self.pre_transform(labels)
labels.pop('ratio_pad', None) # do not need ratio pad
img = labels['img']
cls = labels['cls']
instances = labels.pop('instances')
# Make sure the coord formats are right
instances.convert_bbox(format='xyxy')
instances.denormalize(*img.shape[:2][::-1])
border = labels.pop('mosaic_border', self.border)
self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2 # w, h
# M is affine matrix
# scale for func:`box_candidates`
img, M, scale = self.affine_transform(img, border)
bboxes = self.apply_bboxes(instances.bboxes, M)
segments = instances.segments
keypoints = instances.keypoints
# Update bboxes if there are segments.
if len(segments):
bboxes, segments = self.apply_segments(segments, M)
if keypoints is not None:
keypoints = self.apply_keypoints(keypoints, M)
new_instances = Instances(bboxes, segments, keypoints, bbox_format='xyxy', normalized=False)
# Clip
new_instances.clip(*self.size)
# Filter instances
instances.scale(scale_w=scale, scale_h=scale, bbox_only=True)
# Make the bboxes have the same scale with new_bboxes
i = self.box_candidates(box1=instances.bboxes.T,
box2=new_instances.bboxes.T,
area_thr=0.01 if len(segments) else 0.10)
labels['instances'] = new_instances[i]
labels['cls'] = cls[i]
labels['img'] = img
labels['resized_shape'] = img.shape[:2]
return labels
def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
# Compute box candidates: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
class RandomHSV:
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None:
self.hgain = hgain
self.sgain = sgain
self.vgain = vgain
def __call__(self, labels):
"""Applies random horizontal or vertical flip to an image with a given probability."""
img = labels['img']
if self.hgain or self.sgain or self.vgain:
r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
dtype = img.dtype # uint8
x = np.arange(0, 256, dtype=r.dtype)
lut_hue = ((x * r[0]) % 180).astype(dtype)
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
return labels
class RandomFlip:
def __init__(self, p=0.5, direction='horizontal', flip_idx=None) -> None:
assert direction in ['horizontal', 'vertical'], f'Support direction `horizontal` or `vertical`, got {direction}'
assert 0 <= p <= 1.0
self.p = p
self.direction = direction
self.flip_idx = flip_idx
def __call__(self, labels):
"""Resize image and padding for detection, instance segmentation, pose."""
img = labels['img']
instances = labels.pop('instances')
instances.convert_bbox(format='xywh')
h, w = img.shape[:2]
h = 1 if instances.normalized else h
w = 1 if instances.normalized else w
# Flip up-down
if self.direction == 'vertical' and random.random() < self.p:
img = np.flipud(img)
instances.flipud(h)
if self.direction == 'horizontal' and random.random() < self.p:
img = np.fliplr(img)
instances.fliplr(w)
# For keypoints
if self.flip_idx is not None and instances.keypoints is not None:
instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :])
labels['img'] = np.ascontiguousarray(img)
labels['instances'] = instances
return labels
class LetterBox:
"""Resize image and padding for detection, instance segmentation, pose."""
def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32):
"""Initialize LetterBox object with specific parameters."""
self.new_shape = new_shape
self.auto = auto
self.scaleFill = scaleFill
self.scaleup = scaleup
self.stride = stride
self.center = center # Put the image in the middle or top-left
def __call__(self, labels=None, image=None):
"""Return updated labels and image with added border."""
if labels is None:
labels = {}
img = labels.get('img') if image is None else image
shape = img.shape[:2] # current shape [height, width]
new_shape = labels.pop('rect_shape', self.new_shape)
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not self.scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if self.auto: # minimum rectangle
dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding
elif self.scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
if self.center:
dw /= 2 # divide padding into 2 sides
dh /= 2
if labels.get('ratio_pad'):
labels['ratio_pad'] = (labels['ratio_pad'], (dw, dh)) # for evaluation
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT,
value=(114, 114, 114)) # add border
if len(labels):
labels = self._update_labels(labels, ratio, dw, dh)
labels['img'] = img
labels['resized_shape'] = new_shape
return labels
else:
return img
def _update_labels(self, labels, ratio, padw, padh):
"""Update labels."""
labels['instances'].convert_bbox(format='xyxy')
labels['instances'].denormalize(*labels['img'].shape[:2][::-1])
labels['instances'].scale(*ratio)
labels['instances'].add_padding(padw, padh)
return labels
class CopyPaste:
def __init__(self, p=0.5) -> None:
self.p = p
def __call__(self, labels):
"""Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)."""
im = labels['img']
cls = labels['cls']
h, w = im.shape[:2]
instances = labels.pop('instances')
instances.convert_bbox(format='xyxy')
instances.denormalize(w, h)
if self.p and len(instances.segments):
n = len(instances)
_, w, _ = im.shape # height, width, channels
im_new = np.zeros(im.shape, np.uint8)
# Calculate ioa first then select indexes randomly
ins_flip = deepcopy(instances)
ins_flip.fliplr(w)
ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) # intersection over area, (N, M)
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, )
n = len(indexes)
for j in random.sample(list(indexes), k=round(self.p * n)):
cls = np.concatenate((cls, cls[[j]]), axis=0)
instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0)
cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED)
result = cv2.flip(im, 1) # augment segments (flip left-right)
i = cv2.flip(im_new, 1).astype(bool)
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
labels['img'] = im
labels['cls'] = cls
labels['instances'] = instances
return labels
class Albumentations:
"""YOLOv8 Albumentations class (optional, only used if package is installed)"""
def __init__(self, p=1.0):
"""Initialize the transform object for YOLO bbox formatted params."""
self.p = p
self.transform = None
prefix = colorstr('albumentations: ')
try:
import albumentations as A
check_version(A.__version__, '1.0.3', hard=True) # version requirement
T = [
A.Blur(p=0.01),
A.MedianBlur(p=0.01),
A.ToGray(p=0.01),
A.CLAHE(p=0.01),
A.RandomBrightnessContrast(p=0.0),
A.RandomGamma(p=0.0),
A.ImageCompression(quality_lower=75, p=0.0)] # transforms
self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
except ImportError: # package not installed, skip
pass
except Exception as e:
LOGGER.info(f'{prefix}{e}')
def __call__(self, labels):
"""Generates object detections and returns a dictionary with detection results."""
im = labels['img']
cls = labels['cls']
if len(cls):
labels['instances'].convert_bbox('xywh')
labels['instances'].normalize(*im.shape[:2][::-1])
bboxes = labels['instances'].bboxes
# TODO: add supports of segments and keypoints
if self.transform and random.random() < self.p:
new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed
if len(new['class_labels']) > 0: # skip update if no bbox in new im
labels['img'] = new['image']
labels['cls'] = np.array(new['class_labels'])
bboxes = np.array(new['bboxes'], dtype=np.float32)
labels['instances'].update(bboxes=bboxes)
return labels
# TODO: technically this is not an augmentation, maybe we should put this to another files
class Format:
def __init__(self,
bbox_format='xywh',
normalize=True,
return_mask=False,
return_keypoint=False,
mask_ratio=4,
mask_overlap=True,
batch_idx=True):
self.bbox_format = bbox_format
self.normalize = normalize
self.return_mask = return_mask # set False when training detection only
self.return_keypoint = return_keypoint
self.mask_ratio = mask_ratio
self.mask_overlap = mask_overlap
self.batch_idx = batch_idx # keep the batch indexes
def __call__(self, labels):
"""Return formatted image, classes, bounding boxes & keypoints to be used by 'collate_fn'."""
img = labels.pop('img')
h, w = img.shape[:2]
cls = labels.pop('cls')
instances = labels.pop('instances')
instances.convert_bbox(format=self.bbox_format)
instances.denormalize(w, h)
nl = len(instances)
if self.return_mask:
if nl:
masks, instances, cls = self._format_segments(instances, cls, w, h)
masks = torch.from_numpy(masks)
else:
masks = torch.zeros(1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio,
img.shape[1] // self.mask_ratio)
labels['masks'] = masks
if self.normalize:
instances.normalize(w, h)
labels['img'] = self._format_img(img)
labels['cls'] = torch.from_numpy(cls) if nl else torch.zeros(nl)
labels['bboxes'] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4))
if self.return_keypoint:
labels['keypoints'] = torch.from_numpy(instances.keypoints)
# Then we can use collate_fn
if self.batch_idx:
labels['batch_idx'] = torch.zeros(nl)
return labels
def _format_img(self, img):
"""Format the image for YOLOv5 from Numpy array to PyTorch tensor."""
if len(img.shape) < 3:
img = np.expand_dims(img, -1)
img = np.ascontiguousarray(img.transpose(2, 0, 1)[::-1])
img = torch.from_numpy(img)
return img
def _format_segments(self, instances, cls, w, h):
"""convert polygon points to bitmap."""
segments = instances.segments
if self.mask_overlap:
masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio)
masks = masks[None] # (640, 640) -> (1, 640, 640)
instances = instances[sorted_idx]
cls = cls[sorted_idx]
else:
masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio)
return masks, instances, cls
def v8_transforms(dataset, imgsz, hyp, stretch=False):
"""Convert images to a size suitable for YOLOv8 training."""
pre_transform = Compose([
Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic),
CopyPaste(p=hyp.copy_paste),
RandomPerspective(
degrees=hyp.degrees,
translate=hyp.translate,
scale=hyp.scale,
shear=hyp.shear,
perspective=hyp.perspective,
pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)),
)])
flip_idx = dataset.data.get('flip_idx', []) # for keypoints augmentation
if dataset.use_keypoints:
kpt_shape = dataset.data.get('kpt_shape', None)
if len(flip_idx) == 0 and hyp.fliplr > 0.0:
hyp.fliplr = 0.0
LOGGER.warning("WARNING ⚠️ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'")
elif flip_idx and (len(flip_idx) != kpt_shape[0]):
raise ValueError(f'data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}')
return Compose([
pre_transform,
MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup),
Albumentations(p=1.0),
RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v),
RandomFlip(direction='vertical', p=hyp.flipud),
RandomFlip(direction='horizontal', p=hyp.fliplr, flip_idx=flip_idx)]) # transforms
# Classification augmentations -----------------------------------------------------------------------------------------
def classify_transforms(size=224, mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0)): # IMAGENET_MEAN, IMAGENET_STD
# Transforms to apply if albumentations not installed
if not isinstance(size, int):
raise TypeError(f'classify_transforms() size {size} must be integer, not (list, tuple)')
if any(mean) or any(std):
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(mean, std, inplace=True)])
else:
return T.Compose([CenterCrop(size), ToTensor()])
def hsv2colorjitter(h, s, v):
"""Map HSV (hue, saturation, value) jitter into ColorJitter values (brightness, contrast, saturation, hue)"""
return v, v, s, h
def classify_albumentations(
augment=True,
size=224,
scale=(0.08, 1.0),
hflip=0.5,
vflip=0.0,
hsv_h=0.015, # image HSV-Hue augmentation (fraction)
hsv_s=0.7, # image HSV-Saturation augmentation (fraction)
hsv_v=0.4, # image HSV-Value augmentation (fraction)
mean=(0.0, 0.0, 0.0), # IMAGENET_MEAN
std=(1.0, 1.0, 1.0), # IMAGENET_STD
auto_aug=False,
):
"""YOLOv8 classification Albumentations (optional, only used if package is installed)."""
prefix = colorstr('albumentations: ')
try:
import albumentations as A
from albumentations.pytorch import ToTensorV2
check_version(A.__version__, '1.0.3', hard=True) # version requirement
if augment: # Resize and crop
T = [A.RandomResizedCrop(height=size, width=size, scale=scale)]
if auto_aug:
# TODO: implement AugMix, AutoAug & RandAug in albumentations
LOGGER.info(f'{prefix}auto augmentations are currently not supported')
else:
if hflip > 0:
T += [A.HorizontalFlip(p=hflip)]
if vflip > 0:
T += [A.VerticalFlip(p=vflip)]
if any((hsv_h, hsv_s, hsv_v)):
T += [A.ColorJitter(*hsv2colorjitter(hsv_h, hsv_s, hsv_v))] # brightness, contrast, saturation, hue
else: # Use fixed crop for eval set (reproducibility)
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
return A.Compose(T)
except ImportError: # package not installed, skip
pass
except Exception as e:
LOGGER.info(f'{prefix}{e}')
class ClassifyLetterBox:
"""YOLOv8 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])"""
def __init__(self, size=(640, 640), auto=False, stride=32):
"""Resizes image and crops it to center with max dimensions 'h' and 'w'."""
super().__init__()
self.h, self.w = (size, size) if isinstance(size, int) else size
self.auto = auto # pass max size integer, automatically solve for short side using stride
self.stride = stride # used with auto
def __call__(self, im): # im = np.array HWC
imh, imw = im.shape[:2]
r = min(self.h / imh, self.w / imw) # ratio of new/old
h, w = round(imh * r), round(imw * r) # resized image
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
return im_out
class CenterCrop:
"""YOLOv8 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])"""
def __init__(self, size=640):
"""Converts an image from numpy array to PyTorch tensor."""
super().__init__()
self.h, self.w = (size, size) if isinstance(size, int) else size
def __call__(self, im): # im = np.array HWC
imh, imw = im.shape[:2]
m = min(imh, imw) # min dimension
top, left = (imh - m) // 2, (imw - m) // 2
return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
class ToTensor:
"""YOLOv8 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])."""
def __init__(self, half=False):
"""Initialize YOLOv8 ToTensor object with optional half-precision support."""
super().__init__()
self.half = half
def __call__(self, im): # im = np.array HWC in BGR order
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
im = torch.from_numpy(im) # to torch
im = im.half() if self.half else im.float() # uint8 to fp16/32
im /= 255.0 # 0-255 to 0.0-1.0
return im

View File

@ -1,286 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import glob
import math
import os
import random
from copy import deepcopy
from multiprocessing.pool import ThreadPool
from pathlib import Path
from typing import Optional
import cv2
import numpy as np
import psutil
from torch.utils.data import Dataset
from tqdm import tqdm
from ..utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT
from .utils import HELP_URL, IMG_FORMATS
class BaseDataset(Dataset):
"""
Base dataset class for loading and processing image data.
Args:
img_path (str): Path to the folder containing images.
imgsz (int, optional): Image size. Defaults to 640.
cache (bool, optional): Cache images to RAM or disk during training. Defaults to False.
augment (bool, optional): If True, data augmentation is applied. Defaults to True.
hyp (dict, optional): Hyperparameters to apply data augmentation. Defaults to None.
prefix (str, optional): Prefix to print in log messages. Defaults to ''.
rect (bool, optional): If True, rectangular training is used. Defaults to False.
batch_size (int, optional): Size of batches. Defaults to None.
stride (int, optional): Stride. Defaults to 32.
pad (float, optional): Padding. Defaults to 0.0.
single_cls (bool, optional): If True, single class training is used. Defaults to False.
classes (list): List of included classes. Default is None.
fraction (float): Fraction of dataset to utilize. Default is 1.0 (use all data).
Attributes:
im_files (list): List of image file paths.
labels (list): List of label data dictionaries.
ni (int): Number of images in the dataset.
ims (list): List of loaded images.
npy_files (list): List of numpy file paths.
transforms (callable): Image transformation function.
"""
def __init__(self,
img_path,
imgsz=640,
cache=False,
augment=True,
hyp=DEFAULT_CFG,
prefix='',
rect=False,
batch_size=16,
stride=32,
pad=0.5,
single_cls=False,
classes=None,
fraction=1.0):
super().__init__()
self.img_path = img_path
self.imgsz = imgsz
self.augment = augment
self.single_cls = single_cls
self.prefix = prefix
self.fraction = fraction
self.im_files = self.get_img_files(self.img_path)
self.labels = self.get_labels()
self.update_labels(include_class=classes) # single_cls and include_class
self.ni = len(self.labels) # number of images
self.rect = rect
self.batch_size = batch_size
self.stride = stride
self.pad = pad
if self.rect:
assert self.batch_size is not None
self.set_rectangle()
# Buffer thread for mosaic images
self.buffer = [] # buffer size = batch size
self.max_buffer_length = min((self.ni, self.batch_size * 8, 1000)) if self.augment else 0
# Cache stuff
if cache == 'ram' and not self.check_cache_ram():
cache = False
self.ims, self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni, [None] * self.ni
self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
if cache:
self.cache_images(cache)
# Transforms
self.transforms = self.build_transforms(hyp=hyp)
def get_img_files(self, img_path):
"""Read image files."""
try:
f = [] # image files
for p in img_path if isinstance(img_path, list) else [img_path]:
p = Path(p) # os-agnostic
if p.is_dir(): # dir
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
# F = list(p.rglob('*.*')) # pathlib
elif p.is_file(): # file
with open(p) as t:
t = t.read().strip().splitlines()
parent = str(p.parent) + os.sep
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
# F += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
else:
raise FileNotFoundError(f'{self.prefix}{p} does not exist')
im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
assert im_files, f'{self.prefix}No images found'
except Exception as e:
raise FileNotFoundError(f'{self.prefix}Error loading data from {img_path}\n{HELP_URL}') from e
if self.fraction < 1:
im_files = im_files[:round(len(im_files) * self.fraction)]
return im_files
def update_labels(self, include_class: Optional[list]):
"""include_class, filter labels to include only these classes (optional)."""
include_class_array = np.array(include_class).reshape(1, -1)
for i in range(len(self.labels)):
if include_class is not None:
cls = self.labels[i]['cls']
bboxes = self.labels[i]['bboxes']
segments = self.labels[i]['segments']
keypoints = self.labels[i]['keypoints']
j = (cls == include_class_array).any(1)
self.labels[i]['cls'] = cls[j]
self.labels[i]['bboxes'] = bboxes[j]
if segments:
self.labels[i]['segments'] = [segments[si] for si, idx in enumerate(j) if idx]
if keypoints is not None:
self.labels[i]['keypoints'] = keypoints[j]
if self.single_cls:
self.labels[i]['cls'][:, 0] = 0
def load_image(self, i):
"""Loads 1 image from dataset index 'i', returns (im, resized hw)."""
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i]
if im is None: # not cached in RAM
if fn.exists(): # load npy
im = np.load(fn)
else: # read image
im = cv2.imread(f) # BGR
if im is None:
raise FileNotFoundError(f'Image Not Found {f}')
h0, w0 = im.shape[:2] # orig hw
r = self.imgsz / max(h0, w0) # ratio
if r != 1: # if sizes are not equal
interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA
im = cv2.resize(im, (min(math.ceil(w0 * r), self.imgsz), min(math.ceil(h0 * r), self.imgsz)),
interpolation=interp)
# Add to buffer if training with augmentations
if self.augment:
self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
self.buffer.append(i)
if len(self.buffer) >= self.max_buffer_length:
j = self.buffer.pop(0)
self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None
return im, (h0, w0), im.shape[:2]
return self.ims[i], self.im_hw0[i], self.im_hw[i]
def cache_images(self, cache):
"""Cache images to memory or disk."""
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
fcn = self.cache_images_to_disk if cache == 'disk' else self.load_image
with ThreadPool(NUM_THREADS) as pool:
results = pool.imap(fcn, range(self.ni))
pbar = tqdm(enumerate(results), total=self.ni, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0)
for i, x in pbar:
if cache == 'disk':
b += self.npy_files[i].stat().st_size
else: # 'ram'
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
b += self.ims[i].nbytes
pbar.desc = f'{self.prefix}Caching images ({b / gb:.1f}GB {cache})'
pbar.close()
def cache_images_to_disk(self, i):
"""Saves an image as an *.npy file for faster loading."""
f = self.npy_files[i]
if not f.exists():
np.save(f.as_posix(), cv2.imread(self.im_files[i]))
def check_cache_ram(self, safety_margin=0.5):
"""Check image caching requirements vs available memory."""
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
n = min(self.ni, 30) # extrapolate from 30 random images
for _ in range(n):
im = cv2.imread(random.choice(self.im_files)) # sample image
ratio = self.imgsz / max(im.shape[0], im.shape[1]) # max(h, w) # ratio
b += im.nbytes * ratio ** 2
mem_required = b * self.ni / n * (1 + safety_margin) # GB required to cache dataset into RAM
mem = psutil.virtual_memory()
cache = mem_required < mem.available # to cache or not to cache, that is the question
if not cache:
LOGGER.info(f'{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images '
f'with {int(safety_margin * 100)}% safety margin but only '
f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, '
f"{'caching images ✅' if cache else 'not caching images ⚠️'}")
return cache
def set_rectangle(self):
"""Sets the shape of bounding boxes for YOLO detections as rectangles."""
bi = np.floor(np.arange(self.ni) / self.batch_size).astype(int) # batch index
nb = bi[-1] + 1 # number of batches
s = np.array([x.pop('shape') for x in self.labels]) # hw
ar = s[:, 0] / s[:, 1] # aspect ratio
irect = ar.argsort()
self.im_files = [self.im_files[i] for i in irect]
self.labels = [self.labels[i] for i in irect]
ar = ar[irect]
# Set training image shapes
shapes = [[1, 1]] * nb
for i in range(nb):
ari = ar[bi == i]
mini, maxi = ari.min(), ari.max()
if maxi < 1:
shapes[i] = [maxi, 1]
elif mini > 1:
shapes[i] = [1, 1 / mini]
self.batch_shapes = np.ceil(np.array(shapes) * self.imgsz / self.stride + self.pad).astype(int) * self.stride
self.batch = bi # batch index of image
def __getitem__(self, index):
"""Returns transformed label information for given index."""
return self.transforms(self.get_image_and_label(index))
def get_image_and_label(self, index):
"""Get and return label information from the dataset."""
label = deepcopy(self.labels[index]) # requires deepcopy() https://github.com/ultralytics/ultralytics/pull/1948
label.pop('shape', None) # shape is for rect, remove it
label['img'], label['ori_shape'], label['resized_shape'] = self.load_image(index)
label['ratio_pad'] = (label['resized_shape'][0] / label['ori_shape'][0],
label['resized_shape'][1] / label['ori_shape'][1]) # for evaluation
if self.rect:
label['rect_shape'] = self.batch_shapes[self.batch[index]]
return self.update_labels_info(label)
def __len__(self):
"""Returns the length of the labels list for the dataset."""
return len(self.labels)
def update_labels_info(self, label):
"""custom your label format here."""
return label
def build_transforms(self, hyp=None):
"""Users can custom augmentations here
like:
if self.augment:
# Training transforms
return Compose([])
else:
# Val transforms
return Compose([])
"""
raise NotImplementedError
def get_labels(self):
"""Users can custom their own format here.
Make sure your output is a list with each element like below:
dict(
im_file=im_file,
shape=shape, # format: (height, width)
cls=cls,
bboxes=bboxes, # xywh
segments=segments, # xy
keypoints=keypoints, # xy
normalized=True, # or False
bbox_format="xyxy", # or xywh, ltwh
)
"""
raise NotImplementedError

View File

@ -1,170 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import os
import random
from pathlib import Path
import numpy as np
import torch
from PIL import Image
from torch.utils.data import dataloader, distributed
from ultralytics.yolo.data.dataloaders.stream_loaders import (LOADERS, LoadImages, LoadPilAndNumpy, LoadScreenshots,
LoadStreams, LoadTensor, SourceTypes, autocast_list)
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
from ultralytics.yolo.utils.checks import check_file
from ..utils import RANK, colorstr
from .dataset import YOLODataset
from .utils import PIN_MEMORY
class InfiniteDataLoader(dataloader.DataLoader):
"""Dataloader that reuses workers. Uses same syntax as vanilla DataLoader."""
def __init__(self, *args, **kwargs):
"""Dataloader that infinitely recycles workers, inherits from DataLoader."""
super().__init__(*args, **kwargs)
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
self.iterator = super().__iter__()
def __len__(self):
"""Returns the length of the batch sampler's sampler."""
return len(self.batch_sampler.sampler)
def __iter__(self):
"""Creates a sampler that repeats indefinitely."""
for _ in range(len(self)):
yield next(self.iterator)
def reset(self):
"""Reset iterator.
This is useful when we want to modify settings of dataset while training.
"""
self.iterator = self._get_iterator()
class _RepeatSampler:
"""
Sampler that repeats forever.
Args:
sampler (Dataset.sampler): The sampler to repeat.
"""
def __init__(self, sampler):
"""Initializes an object that repeats a given sampler indefinitely."""
self.sampler = sampler
def __iter__(self):
"""Iterates over the 'sampler' and yields its contents."""
while True:
yield from iter(self.sampler)
def seed_worker(worker_id): # noqa
"""Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader."""
worker_seed = torch.initial_seed() % 2 ** 32
np.random.seed(worker_seed)
random.seed(worker_seed)
def build_yolo_dataset(cfg, img_path, batch, data, mode='train', rect=False, stride=32):
"""Build YOLO Dataset"""
return YOLODataset(
img_path=img_path,
imgsz=cfg.imgsz,
batch_size=batch,
augment=mode == 'train', # augmentation
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
rect=cfg.rect or rect, # rectangular batches
cache=cfg.cache or None,
single_cls=cfg.single_cls or False,
stride=int(stride),
pad=0.0 if mode == 'train' else 0.5,
prefix=colorstr(f'{mode}: '),
use_segments=cfg.task == 'segment',
use_keypoints=cfg.task == 'pose',
classes=cfg.classes,
data=data,
fraction=cfg.fraction if mode == 'train' else 1.0)
def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1):
"""Return an InfiniteDataLoader or DataLoader for training or validation set."""
batch = min(batch, len(dataset))
nd = torch.cuda.device_count() # number of CUDA devices
nw = min([os.cpu_count() // max(nd, 1), batch if batch > 1 else 0, workers]) # number of workers
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
generator = torch.Generator()
generator.manual_seed(6148914691236517205 + RANK)
return InfiniteDataLoader(dataset=dataset,
batch_size=batch,
shuffle=shuffle and sampler is None,
num_workers=nw,
sampler=sampler,
pin_memory=PIN_MEMORY,
collate_fn=getattr(dataset, 'collate_fn', None),
worker_init_fn=seed_worker,
generator=generator)
def check_source(source):
"""Check source type and return corresponding flag values."""
webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False
if isinstance(source, (str, int, Path)): # int for local usb camera
source = str(source)
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://'))
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
screenshot = source.lower() == 'screen'
if is_url and is_file:
source = check_file(source) # download
elif isinstance(source, tuple(LOADERS)):
in_memory = True
elif isinstance(source, (list, tuple)):
source = autocast_list(source) # convert all list elements to PIL or np arrays
from_img = True
elif isinstance(source, (Image.Image, np.ndarray)):
from_img = True
elif isinstance(source, torch.Tensor):
tensor = True
else:
raise TypeError('Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict')
return source, webcam, screenshot, from_img, in_memory, tensor
def load_inference_source(source=None, imgsz=640, vid_stride=1):
"""
Loads an inference source for object detection and applies necessary transformations.
Args:
source (str, Path, Tensor, PIL.Image, np.ndarray): The input source for inference.
imgsz (int, optional): The size of the image for inference. Default is 640.
vid_stride (int, optional): The frame interval for video sources. Default is 1.
Returns:
dataset (Dataset): A dataset object for the specified input source.
"""
source, webcam, screenshot, from_img, in_memory, tensor = check_source(source)
source_type = source.source_type if in_memory else SourceTypes(webcam, screenshot, from_img, tensor)
# Dataloader
if tensor:
dataset = LoadTensor(source)
elif in_memory:
dataset = source
elif webcam:
dataset = LoadStreams(source, imgsz=imgsz, vid_stride=vid_stride)
elif screenshot:
dataset = LoadScreenshots(source, imgsz=imgsz)
elif from_img:
dataset = LoadPilAndNumpy(source, imgsz=imgsz)
else:
dataset = LoadImages(source, imgsz=imgsz, vid_stride=vid_stride)
# Attach source types to the dataset
setattr(dataset, 'source_type', source_type)
return dataset

View File

@ -1,230 +0,0 @@
import json
from collections import defaultdict
from pathlib import Path
import cv2
import numpy as np
from tqdm import tqdm
from ultralytics.yolo.utils.checks import check_requirements
from ultralytics.yolo.utils.files import make_dirs
def coco91_to_coco80_class():
"""Converts 91-index COCO class IDs to 80-index COCO class IDs.
Returns:
(list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the
corresponding 91-index class ID.
"""
return [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None,
None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
None, 73, 74, 75, 76, 77, 78, 79, None]
def convert_coco(labels_dir='../coco/annotations/', use_segments=False, use_keypoints=False, cls91to80=True):
"""Converts COCO dataset annotations to a format suitable for training YOLOv5 models.
Args:
labels_dir (str, optional): Path to directory containing COCO dataset annotation files.
use_segments (bool, optional): Whether to include segmentation masks in the output.
use_keypoints (bool, optional): Whether to include keypoint annotations in the output.
cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs.
Raises:
FileNotFoundError: If the labels_dir path does not exist.
Example Usage:
convert_coco(labels_dir='../coco/annotations/', use_segments=True, use_keypoints=True, cls91to80=True)
Output:
Generates output files in the specified output directory.
"""
save_dir = make_dirs('yolo_labels') # output directory
coco80 = coco91_to_coco80_class()
# Import json
for json_file in sorted(Path(labels_dir).resolve().glob('*.json')):
fn = Path(save_dir) / 'labels' / json_file.stem.replace('instances_', '') # folder name
fn.mkdir(parents=True, exist_ok=True)
with open(json_file) as f:
data = json.load(f)
# Create image dict
images = {f'{x["id"]:d}': x for x in data['images']}
# Create image-annotations dict
imgToAnns = defaultdict(list)
for ann in data['annotations']:
imgToAnns[ann['image_id']].append(ann)
# Write labels file
for img_id, anns in tqdm(imgToAnns.items(), desc=f'Annotations {json_file}'):
img = images[f'{img_id:d}']
h, w, f = img['height'], img['width'], img['file_name']
bboxes = []
segments = []
keypoints = []
for ann in anns:
if ann['iscrowd']:
continue
# The COCO box format is [top left x, top left y, width, height]
box = np.array(ann['bbox'], dtype=np.float64)
box[:2] += box[2:] / 2 # xy top-left corner to center
box[[0, 2]] /= w # normalize x
box[[1, 3]] /= h # normalize y
if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0
continue
cls = coco80[ann['category_id'] - 1] if cls91to80 else ann['category_id'] - 1 # class
box = [cls] + box.tolist()
if box not in bboxes:
bboxes.append(box)
if use_segments and ann.get('segmentation') is not None:
if len(ann['segmentation']) == 0:
segments.append([])
continue
if isinstance(ann['segmentation'], dict):
ann['segmentation'] = rle2polygon(ann['segmentation'])
if len(ann['segmentation']) > 1:
s = merge_multi_segment(ann['segmentation'])
s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist()
else:
s = [j for i in ann['segmentation'] for j in i] # all segments concatenated
s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist()
s = [cls] + s
if s not in segments:
segments.append(s)
if use_keypoints and ann.get('keypoints') is not None:
k = (np.array(ann['keypoints']).reshape(-1, 3) / np.array([w, h, 1])).reshape(-1).tolist()
k = box + k
keypoints.append(k)
# Write
with open((fn / f).with_suffix('.txt'), 'a') as file:
for i in range(len(bboxes)):
if use_keypoints:
line = *(keypoints[i]), # cls, box, keypoints
else:
line = *(segments[i]
if use_segments and len(segments[i]) > 0 else bboxes[i]), # cls, box or segments
file.write(('%g ' * len(line)).rstrip() % line + '\n')
def rle2polygon(segmentation):
"""
Convert Run-Length Encoding (RLE) mask to polygon coordinates.
Args:
segmentation (dict, list): RLE mask representation of the object segmentation.
Returns:
(list): A list of lists representing the polygon coordinates for each contour.
Note:
Requires the 'pycocotools' package to be installed.
"""
check_requirements('pycocotools')
from pycocotools import mask
m = mask.decode(segmentation)
m[m > 0] = 255
contours, _ = cv2.findContours(m, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)
polygons = []
for contour in contours:
epsilon = 0.001 * cv2.arcLength(contour, True)
contour_approx = cv2.approxPolyDP(contour, epsilon, True)
polygon = contour_approx.flatten().tolist()
polygons.append(polygon)
return polygons
def min_index(arr1, arr2):
"""
Find a pair of indexes with the shortest distance between two arrays of 2D points.
Args:
arr1 (np.array): A NumPy array of shape (N, 2) representing N 2D points.
arr2 (np.array): A NumPy array of shape (M, 2) representing M 2D points.
Returns:
(tuple): A tuple containing the indexes of the points with the shortest distance in arr1 and arr2 respectively.
"""
dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1)
return np.unravel_index(np.argmin(dis, axis=None), dis.shape)
def merge_multi_segment(segments):
"""
Merge multiple segments into one list by connecting the coordinates with the minimum distance between each segment.
This function connects these coordinates with a thin line to merge all segments into one.
Args:
segments (List[List]): Original segmentations in COCO's JSON file.
Each element is a list of coordinates, like [segmentation1, segmentation2,...].
Returns:
s (List[np.ndarray]): A list of connected segments represented as NumPy arrays.
"""
s = []
segments = [np.array(i).reshape(-1, 2) for i in segments]
idx_list = [[] for _ in range(len(segments))]
# record the indexes with min distance between each segment
for i in range(1, len(segments)):
idx1, idx2 = min_index(segments[i - 1], segments[i])
idx_list[i - 1].append(idx1)
idx_list[i].append(idx2)
# use two round to connect all the segments
for k in range(2):
# forward connection
if k == 0:
for i, idx in enumerate(idx_list):
# middle segments have two indexes
# reverse the index of middle segments
if len(idx) == 2 and idx[0] > idx[1]:
idx = idx[::-1]
segments[i] = segments[i][::-1, :]
segments[i] = np.roll(segments[i], -idx[0], axis=0)
segments[i] = np.concatenate([segments[i], segments[i][:1]])
# deal with the first segment and the last one
if i in [0, len(idx_list) - 1]:
s.append(segments[i])
else:
idx = [0, idx[1] - idx[0]]
s.append(segments[i][idx[0]:idx[1] + 1])
else:
for i in range(len(idx_list) - 1, -1, -1):
if i not in [0, len(idx_list) - 1]:
idx = idx_list[i]
nidx = abs(idx[1] - idx[0])
s.append(segments[i][nidx:])
return s
def delete_dsstore(path='../datasets'):
"""Delete Apple .DS_Store files in the specified directory and its subdirectories."""
from pathlib import Path
files = list(Path(path).rglob('.DS_store'))
print(files)
for f in files:
f.unlink()
if __name__ == '__main__':
source = 'COCO'
if source == 'COCO':
convert_coco(
'../datasets/coco/annotations', # directory with *.json
use_segments=False,
use_keypoints=True,
cls91to80=False)

View File

@ -1,404 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import glob
import math
import os
import time
from dataclasses import dataclass
from pathlib import Path
from threading import Thread
from urllib.parse import urlparse
import cv2
import numpy as np
import requests
import torch
from PIL import Image
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
from ultralytics.yolo.utils import LOGGER, ROOT, is_colab, is_kaggle, ops
from ultralytics.yolo.utils.checks import check_requirements
@dataclass
class SourceTypes:
webcam: bool = False
screenshot: bool = False
from_img: bool = False
tensor: bool = False
class LoadStreams:
"""YOLOv8 streamloader, i.e. `yolo predict source='rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`."""
def __init__(self, sources='file.streams', imgsz=640, vid_stride=1):
"""Initialize instance variables and check for consistent input stream shapes."""
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
self.mode = 'stream'
self.imgsz = imgsz
self.vid_stride = vid_stride # video frame-rate stride
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
n = len(sources)
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later
self.imgs, self.fps, self.frames, self.threads, self.shape = [[]] * n, [0] * n, [0] * n, [None] * n, [None] * n
for i, s in enumerate(sources): # index, source
# Start thread to read frames from video stream
st = f'{i + 1}/{n}: {s}... '
if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video
# YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc'
s = get_best_youtube_url(s)
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
if s == 0 and (is_colab() or is_kaggle()):
raise NotImplementedError("'source=0' webcam not supported in Colab and Kaggle notebooks. "
"Try running 'source=0' in a local environment.")
cap = cv2.VideoCapture(s)
if not cap.isOpened():
raise ConnectionError(f'{st}Failed to open {s}')
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
success, im = cap.read() # guarantee first frame
if not success or im is None:
raise ConnectionError(f'{st}Failed to read images from {s}')
self.imgs[i].append(im)
self.shape[i] = im.shape
self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
LOGGER.info(f'{st}Success ✅ ({self.frames[i]} frames of shape {w}x{h} at {self.fps[i]:.2f} FPS)')
self.threads[i].start()
LOGGER.info('') # newline
# Check for common shapes
self.bs = self.__len__()
def update(self, i, cap, stream):
"""Read stream `i` frames in daemon thread."""
n, f = 0, self.frames[i] # frame number, frame array
while cap.isOpened() and n < f:
# Only read a new frame if the buffer is empty
if not self.imgs[i]:
n += 1
cap.grab() # .read() = .grab() followed by .retrieve()
if n % self.vid_stride == 0:
success, im = cap.retrieve()
if success:
self.imgs[i].append(im) # add image to buffer
else:
LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.')
self.imgs[i].append(np.zeros(self.shape[i]))
cap.open(stream) # re-open stream if signal was lost
else:
time.sleep(0.01) # wait until the buffer is empty
def __iter__(self):
"""Iterates through YOLO image feed and re-opens unresponsive streams."""
self.count = -1
return self
def __next__(self):
"""Returns source paths, transformed and original images for processing."""
self.count += 1
# Wait until a frame is available in each buffer
while not all(self.imgs):
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
cv2.destroyAllWindows()
raise StopIteration
time.sleep(1 / min(self.fps))
# Get and remove the next frame from imgs buffer
return self.sources, [x.pop(0) for x in self.imgs], None, ''
def __len__(self):
"""Return the length of the sources object."""
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
class LoadScreenshots:
"""YOLOv8 screenshot dataloader, i.e. `yolo predict source=screen`."""
def __init__(self, source, imgsz=640):
"""source = [screen_number left top width height] (pixels)."""
check_requirements('mss')
import mss # noqa
source, *params = source.split()
self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0
if len(params) == 1:
self.screen = int(params[0])
elif len(params) == 4:
left, top, width, height = (int(x) for x in params)
elif len(params) == 5:
self.screen, left, top, width, height = (int(x) for x in params)
self.imgsz = imgsz
self.mode = 'stream'
self.frame = 0
self.sct = mss.mss()
self.bs = 1
# Parse monitor shape
monitor = self.sct.monitors[self.screen]
self.top = monitor['top'] if top is None else (monitor['top'] + top)
self.left = monitor['left'] if left is None else (monitor['left'] + left)
self.width = width or monitor['width']
self.height = height or monitor['height']
self.monitor = {'left': self.left, 'top': self.top, 'width': self.width, 'height': self.height}
def __iter__(self):
"""Returns an iterator of the object."""
return self
def __next__(self):
"""mss screen capture: get raw pixels from the screen as np array."""
im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR
s = f'screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: '
self.frame += 1
return str(self.screen), im0, None, s # screen, img, original img, im0s, s
class LoadImages:
"""YOLOv8 image/video dataloader, i.e. `yolo predict source=image.jpg/vid.mp4`."""
def __init__(self, path, imgsz=640, vid_stride=1):
"""Initialize the Dataloader and raise FileNotFoundError if file not found."""
if isinstance(path, str) and Path(path).suffix == '.txt': # *.txt file with img/vid/dir on each line
path = Path(path).read_text().rsplit()
files = []
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
p = str(Path(p).absolute()) # do not use .resolve() https://github.com/ultralytics/ultralytics/issues/2912
if '*' in p:
files.extend(sorted(glob.glob(p, recursive=True))) # glob
elif os.path.isdir(p):
files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) # dir
elif os.path.isfile(p):
files.append(p) # files
else:
raise FileNotFoundError(f'{p} does not exist')
images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
ni, nv = len(images), len(videos)
self.imgsz = imgsz
self.files = images + videos
self.nf = ni + nv # number of files
self.video_flag = [False] * ni + [True] * nv
self.mode = 'image'
self.vid_stride = vid_stride # video frame-rate stride
self.bs = 1
if any(videos):
self.orientation = None # rotation degrees
self._new_video(videos[0]) # new video
else:
self.cap = None
if self.nf == 0:
raise FileNotFoundError(f'No images or videos found in {p}. '
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}')
def __iter__(self):
"""Returns an iterator object for VideoStream or ImageFolder."""
self.count = 0
return self
def __next__(self):
"""Return next image, path and metadata from dataset."""
if self.count == self.nf:
raise StopIteration
path = self.files[self.count]
if self.video_flag[self.count]:
# Read video
self.mode = 'video'
for _ in range(self.vid_stride):
self.cap.grab()
success, im0 = self.cap.retrieve()
while not success:
self.count += 1
self.cap.release()
if self.count == self.nf: # last video
raise StopIteration
path = self.files[self.count]
self._new_video(path)
success, im0 = self.cap.read()
self.frame += 1
# im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False
s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
else:
# Read image
self.count += 1
im0 = cv2.imread(path) # BGR
if im0 is None:
raise FileNotFoundError(f'Image Not Found {path}')
s = f'image {self.count}/{self.nf} {path}: '
return [path], [im0], self.cap, s
def _new_video(self, path):
"""Create a new video capture object."""
self.frame = 0
self.cap = cv2.VideoCapture(path)
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
if hasattr(cv2, 'CAP_PROP_ORIENTATION_META'): # cv2<4.6.0 compatibility
self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META)) # rotation degrees
# Disable auto-orientation due to known issues in https://github.com/ultralytics/yolov5/issues/8493
# self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0)
def _cv2_rotate(self, im):
"""Rotate a cv2 video manually."""
if self.orientation == 0:
return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
elif self.orientation == 180:
return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
elif self.orientation == 90:
return cv2.rotate(im, cv2.ROTATE_180)
return im
def __len__(self):
"""Returns the number of files in the object."""
return self.nf # number of files
class LoadPilAndNumpy:
def __init__(self, im0, imgsz=640):
"""Initialize PIL and Numpy Dataloader."""
if not isinstance(im0, list):
im0 = [im0]
self.paths = [getattr(im, 'filename', f'image{i}.jpg') for i, im in enumerate(im0)]
self.im0 = [self._single_check(im) for im in im0]
self.imgsz = imgsz
self.mode = 'image'
# Generate fake paths
self.bs = len(self.im0)
@staticmethod
def _single_check(im):
"""Validate and format an image to numpy array."""
assert isinstance(im, (Image.Image, np.ndarray)), f'Expected PIL/np.ndarray image type, but got {type(im)}'
if isinstance(im, Image.Image):
if im.mode != 'RGB':
im = im.convert('RGB')
im = np.asarray(im)[:, :, ::-1]
im = np.ascontiguousarray(im) # contiguous
return im
def __len__(self):
"""Returns the length of the 'im0' attribute."""
return len(self.im0)
def __next__(self):
"""Returns batch paths, images, processed images, None, ''."""
if self.count == 1: # loop only once as it's batch inference
raise StopIteration
self.count += 1
return self.paths, self.im0, None, ''
def __iter__(self):
"""Enables iteration for class LoadPilAndNumpy."""
self.count = 0
return self
class LoadTensor:
def __init__(self, im0) -> None:
self.im0 = self._single_check(im0)
self.bs = self.im0.shape[0]
self.mode = 'image'
self.paths = [getattr(im, 'filename', f'image{i}.jpg') for i, im in enumerate(im0)]
@staticmethod
def _single_check(im, stride=32):
"""Validate and format an image to torch.Tensor."""
s = f'WARNING ⚠️ torch.Tensor inputs should be BCHW i.e. shape(1, 3, 640, 640) ' \
f'divisible by stride {stride}. Input shape{tuple(im.shape)} is incompatible.'
if len(im.shape) != 4:
if len(im.shape) == 3:
LOGGER.warning(s)
im = im.unsqueeze(0)
else:
raise ValueError(s)
if im.shape[2] % stride or im.shape[3] % stride:
raise ValueError(s)
if im.max() > 1.0:
LOGGER.warning(f'WARNING ⚠️ torch.Tensor inputs should be normalized 0.0-1.0 but max value is {im.max()}. '
f'Dividing input by 255.')
im = im.float() / 255.0
return im
def __iter__(self):
"""Returns an iterator object."""
self.count = 0
return self
def __next__(self):
"""Return next item in the iterator."""
if self.count == 1:
raise StopIteration
self.count += 1
return self.paths, self.im0, None, ''
def __len__(self):
"""Returns the batch size."""
return self.bs
def autocast_list(source):
"""
Merges a list of source of different types into a list of numpy arrays or PIL images
"""
files = []
for im in source:
if isinstance(im, (str, Path)): # filename or uri
files.append(Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im))
elif isinstance(im, (Image.Image, np.ndarray)): # PIL or np Image
files.append(im)
else:
raise TypeError(f'type {type(im).__name__} is not a supported Ultralytics prediction source type. \n'
f'See https://docs.ultralytics.com/modes/predict for supported source types.')
return files
LOADERS = [LoadStreams, LoadPilAndNumpy, LoadImages, LoadScreenshots]
def get_best_youtube_url(url, use_pafy=True):
"""
Retrieves the URL of the best quality MP4 video stream from a given YouTube video.
This function uses the pafy or yt_dlp library to extract the video info from YouTube. It then finds the highest
quality MP4 format that has video codec but no audio codec, and returns the URL of this video stream.
Args:
url (str): The URL of the YouTube video.
use_pafy (bool): Use the pafy package, default=True, otherwise use yt_dlp package.
Returns:
(str): The URL of the best quality MP4 video stream, or None if no suitable stream is found.
"""
if use_pafy:
check_requirements(('pafy', 'youtube_dl==2020.12.2'))
import pafy # noqa
return pafy.new(url).getbest(preftype='mp4').url
else:
check_requirements('yt-dlp')
import yt_dlp
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
info_dict = ydl.extract_info(url, download=False) # extract info
for f in info_dict.get('formats', None):
if f['vcodec'] != 'none' and f['acodec'] == 'none' and f['ext'] == 'mp4':
return f.get('url', None)
if __name__ == '__main__':
img = cv2.imread(str(ROOT / 'assets/bus.jpg'))
dataset = LoadPilAndNumpy(im0=img)
for d in dataset:
print(d[0])

View File

@ -1,274 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
import cv2
import numpy as np
import torch
import torchvision
from tqdm import tqdm
from ..utils import LOCAL_RANK, NUM_THREADS, TQDM_BAR_FORMAT, is_dir_writeable
from .augment import Compose, Format, Instances, LetterBox, classify_albumentations, classify_transforms, v8_transforms
from .base import BaseDataset
from .utils import HELP_URL, LOGGER, get_hash, img2label_paths, verify_image_label
class YOLODataset(BaseDataset):
"""
Dataset class for loading object detection and/or segmentation labels in YOLO format.
Args:
data (dict, optional): A dataset YAML dictionary. Defaults to None.
use_segments (bool, optional): If True, segmentation masks are used as labels. Defaults to False.
use_keypoints (bool, optional): If True, keypoints are used as labels. Defaults to False.
Returns:
(torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model.
"""
cache_version = '1.0.2' # dataset labels *.cache version, >= 1.0.0 for YOLOv8
rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
def __init__(self, *args, data=None, use_segments=False, use_keypoints=False, **kwargs):
self.use_segments = use_segments
self.use_keypoints = use_keypoints
self.data = data
assert not (self.use_segments and self.use_keypoints), 'Can not use both segments and keypoints.'
super().__init__(*args, **kwargs)
def cache_labels(self, path=Path('./labels.cache')):
"""Cache dataset labels, check images and read shapes.
Args:
path (Path): path where to save the cache file (default: Path('./labels.cache')).
Returns:
(dict): labels.
"""
x = {'labels': []}
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
desc = f'{self.prefix}Scanning {path.parent / path.stem}...'
total = len(self.im_files)
nkpt, ndim = self.data.get('kpt_shape', (0, 0))
if self.use_keypoints and (nkpt <= 0 or ndim not in (2, 3)):
raise ValueError("'kpt_shape' in data.yaml missing or incorrect. Should be a list with [number of "
"keypoints, number of dims (2 for x,y or 3 for x,y,visible)], i.e. 'kpt_shape: [17, 3]'")
with ThreadPool(NUM_THREADS) as pool:
results = pool.imap(func=verify_image_label,
iterable=zip(self.im_files, self.label_files, repeat(self.prefix),
repeat(self.use_keypoints), repeat(len(self.data['names'])), repeat(nkpt),
repeat(ndim)))
pbar = tqdm(results, desc=desc, total=total, bar_format=TQDM_BAR_FORMAT)
for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar:
nm += nm_f
nf += nf_f
ne += ne_f
nc += nc_f
if im_file:
x['labels'].append(
dict(
im_file=im_file,
shape=shape,
cls=lb[:, 0:1], # n, 1
bboxes=lb[:, 1:], # n, 4
segments=segments,
keypoints=keypoint,
normalized=True,
bbox_format='xywh'))
if msg:
msgs.append(msg)
pbar.desc = f'{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt'
pbar.close()
if msgs:
LOGGER.info('\n'.join(msgs))
if nf == 0:
LOGGER.warning(f'{self.prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}')
x['hash'] = get_hash(self.label_files + self.im_files)
x['results'] = nf, nm, ne, nc, len(self.im_files)
x['msgs'] = msgs # warnings
x['version'] = self.cache_version # cache version
if is_dir_writeable(path.parent):
if path.exists():
path.unlink() # remove *.cache file if exists
np.save(str(path), x) # save cache for next time
path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
LOGGER.info(f'{self.prefix}New cache created: {path}')
else:
LOGGER.warning(f'{self.prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable, cache not saved.')
return x
def get_labels(self):
"""Returns dictionary of labels for YOLO training."""
self.label_files = img2label_paths(self.im_files)
cache_path = Path(self.label_files[0]).parent.with_suffix('.cache')
try:
import gc
gc.disable() # reduce pickle load time https://github.com/ultralytics/ultralytics/pull/1585
cache, exists = np.load(str(cache_path), allow_pickle=True).item(), True # load dict
gc.enable()
assert cache['version'] == self.cache_version # matches current version
assert cache['hash'] == get_hash(self.label_files + self.im_files) # identical hash
except (FileNotFoundError, AssertionError, AttributeError):
cache, exists = self.cache_labels(cache_path), False # run cache ops
# Display cache
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
if exists and LOCAL_RANK in (-1, 0):
d = f'Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt'
tqdm(None, desc=self.prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) # display cache results
if cache['msgs']:
LOGGER.info('\n'.join(cache['msgs'])) # display warnings
if nf == 0: # number of labels found
raise FileNotFoundError(f'{self.prefix}No labels found in {cache_path}, can not start training. {HELP_URL}')
# Read cache
[cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
labels = cache['labels']
self.im_files = [lb['im_file'] for lb in labels] # update im_files
# Check if the dataset is all boxes or all segments
lengths = ((len(lb['cls']), len(lb['bboxes']), len(lb['segments'])) for lb in labels)
len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths))
if len_segments and len_boxes != len_segments:
LOGGER.warning(
f'WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = {len_segments}, '
f'len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. '
'To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset.')
for lb in labels:
lb['segments'] = []
if len_cls == 0:
raise ValueError(f'All labels empty in {cache_path}, can not start training without labels. {HELP_URL}')
return labels
# TODO: use hyp config to set all these augmentations
def build_transforms(self, hyp=None):
"""Builds and appends transforms to the list."""
if self.augment:
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
transforms = v8_transforms(self, self.imgsz, hyp)
else:
transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)])
transforms.append(
Format(bbox_format='xywh',
normalize=True,
return_mask=self.use_segments,
return_keypoint=self.use_keypoints,
batch_idx=True,
mask_ratio=hyp.mask_ratio,
mask_overlap=hyp.overlap_mask))
return transforms
def close_mosaic(self, hyp):
"""Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations."""
hyp.mosaic = 0.0 # set mosaic ratio=0.0
hyp.copy_paste = 0.0 # keep the same behavior as previous v8 close-mosaic
hyp.mixup = 0.0 # keep the same behavior as previous v8 close-mosaic
self.transforms = self.build_transforms(hyp)
def update_labels_info(self, label):
"""custom your label format here."""
# NOTE: cls is not with bboxes now, classification and semantic segmentation need an independent cls label
# we can make it also support classification and semantic segmentation by add or remove some dict keys there.
bboxes = label.pop('bboxes')
segments = label.pop('segments')
keypoints = label.pop('keypoints', None)
bbox_format = label.pop('bbox_format')
normalized = label.pop('normalized')
label['instances'] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized)
return label
@staticmethod
def collate_fn(batch):
"""Collates data samples into batches."""
new_batch = {}
keys = batch[0].keys()
values = list(zip(*[list(b.values()) for b in batch]))
for i, k in enumerate(keys):
value = values[i]
if k == 'img':
value = torch.stack(value, 0)
if k in ['masks', 'keypoints', 'bboxes', 'cls']:
value = torch.cat(value, 0)
new_batch[k] = value
new_batch['batch_idx'] = list(new_batch['batch_idx'])
for i in range(len(new_batch['batch_idx'])):
new_batch['batch_idx'][i] += i # add target image index for build_targets()
new_batch['batch_idx'] = torch.cat(new_batch['batch_idx'], 0)
return new_batch
# Classification dataloaders -------------------------------------------------------------------------------------------
class ClassificationDataset(torchvision.datasets.ImageFolder):
"""
YOLO Classification Dataset.
Args:
root (str): Dataset path.
Attributes:
cache_ram (bool): True if images should be cached in RAM, False otherwise.
cache_disk (bool): True if images should be cached on disk, False otherwise.
samples (list): List of samples containing file, index, npy, and im.
torch_transforms (callable): torchvision transforms applied to the dataset.
album_transforms (callable, optional): Albumentations transforms applied to the dataset if augment is True.
"""
def __init__(self, root, args, augment=False, cache=False):
"""
Initialize YOLO object with root, image size, augmentations, and cache settings.
Args:
root (str): Dataset path.
args (Namespace): Argument parser containing dataset related settings.
augment (bool, optional): True if dataset should be augmented, False otherwise. Defaults to False.
cache (bool | str | optional): Cache setting, can be True, False, 'ram' or 'disk'. Defaults to False.
"""
super().__init__(root=root)
if augment and args.fraction < 1.0: # reduce training fraction
self.samples = self.samples[:round(len(self.samples) * args.fraction)]
self.cache_ram = cache is True or cache == 'ram'
self.cache_disk = cache == 'disk'
self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples] # file, index, npy, im
self.torch_transforms = classify_transforms(args.imgsz)
self.album_transforms = classify_albumentations(
augment=augment,
size=args.imgsz,
scale=(1.0 - args.scale, 1.0), # (0.08, 1.0)
hflip=args.fliplr,
vflip=args.flipud,
hsv_h=args.hsv_h, # HSV-Hue augmentation (fraction)
hsv_s=args.hsv_s, # HSV-Saturation augmentation (fraction)
hsv_v=args.hsv_v, # HSV-Value augmentation (fraction)
mean=(0.0, 0.0, 0.0), # IMAGENET_MEAN
std=(1.0, 1.0, 1.0), # IMAGENET_STD
auto_aug=False) if augment else None
def __getitem__(self, i):
"""Returns subset of data and targets corresponding to given indices."""
f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image
if self.cache_ram and im is None:
im = self.samples[i][3] = cv2.imread(f)
elif self.cache_disk:
if not fn.exists(): # load npy
np.save(fn.as_posix(), cv2.imread(f))
im = np.load(fn)
else: # read image
im = cv2.imread(f) # BGR
if self.album_transforms:
sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))['image']
else:
sample = self.torch_transforms(im)
return {'img': sample, 'cls': j}
def __len__(self) -> int:
return len(self.samples)
# TODO: support semantic segmentation
class SemanticDataset(BaseDataset):
def __init__(self):
"""Initialize a SemanticDataset object."""
super().__init__()

View File

@ -1,53 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import collections
from copy import deepcopy
from .augment import LetterBox
class MixAndRectDataset:
"""
A dataset class that applies mosaic and mixup transformations as well as rectangular training.
Attributes:
dataset: The base dataset.
imgsz: The size of the images in the dataset.
"""
def __init__(self, dataset):
"""
Args:
dataset (BaseDataset): The base dataset to apply transformations to.
"""
self.dataset = dataset
self.imgsz = dataset.imgsz
def __len__(self):
"""Returns the number of items in the dataset."""
return len(self.dataset)
def __getitem__(self, index):
"""
Applies mosaic, mixup and rectangular training transformations to an item in the dataset.
Args:
index (int): Index of the item in the dataset.
Returns:
(dict): A dictionary containing the transformed item data.
"""
labels = deepcopy(self.dataset[index])
for transform in self.dataset.transforms.tolist():
# Mosaic and mixup
if hasattr(transform, 'get_indexes'):
indexes = transform.get_indexes(self.dataset)
if not isinstance(indexes, collections.abc.Sequence):
indexes = [indexes]
labels['mix_labels'] = [deepcopy(self.dataset[index]) for index in indexes]
if self.dataset.rect and isinstance(transform, LetterBox):
transform.new_shape = self.dataset.batch_shapes[self.dataset.batch[index]]
labels = transform(labels)
if 'mix_labels' in labels:
labels.pop('mix_labels')
return labels

View File

@ -1,18 +0,0 @@
#!/bin/bash
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Download latest models from https://github.com/ultralytics/assets/releases
# Example usage: bash ultralytics/yolo/data/scripts/download_weights.sh
# parent
# └── weights
# ├── yolov8n.pt ← downloads here
# ├── yolov8s.pt
# └── ...
python - <<EOF
from ultralytics.yolo.utils.downloads import attempt_download_asset
assets = [f'yolov8{size}{suffix}.pt' for size in 'nsmlx' for suffix in ('', '-cls', '-seg')]
for x in assets:
attempt_download_asset(f'weights/{x}')
EOF

View File

@ -1,60 +0,0 @@
#!/bin/bash
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Download COCO 2017 dataset http://cocodataset.org
# Example usage: bash data/scripts/get_coco.sh
# parent
# ├── ultralytics
# └── datasets
# └── coco ← downloads here
# Arguments (optional) Usage: bash data/scripts/get_coco.sh --train --val --test --segments
if [ "$#" -gt 0 ]; then
for opt in "$@"; do
case "${opt}" in
--train) train=true ;;
--val) val=true ;;
--test) test=true ;;
--segments) segments=true ;;
--sama) sama=true ;;
esac
done
else
train=true
val=true
test=false
segments=false
sama=false
fi
# Download/unzip labels
d='../datasets' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
if [ "$segments" == "true" ]; then
f='coco2017labels-segments.zip' # 169 MB
elif [ "$sama" == "true" ]; then
f='coco2017labels-segments-sama.zip' # 199 MB https://www.sama.com/sama-coco-dataset/
else
f='coco2017labels.zip' # 46 MB
fi
echo 'Downloading' $url$f ' ...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
# Download/unzip images
d='../datasets/coco/images' # unzip directory
url=http://images.cocodataset.org/zips/
if [ "$train" == "true" ]; then
f='train2017.zip' # 19G, 118k images
echo 'Downloading' $url$f '...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
fi
if [ "$val" == "true" ]; then
f='val2017.zip' # 1G, 5k images
echo 'Downloading' $url$f '...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
fi
if [ "$test" == "true" ]; then
f='test2017.zip' # 7G, 41k images (optional)
echo 'Downloading' $url$f '...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
fi
wait # finish background tasks

View File

@ -1,17 +0,0 @@
#!/bin/bash
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
# Example usage: bash data/scripts/get_coco128.sh
# parent
# ├── ultralytics
# └── datasets
# └── coco128 ← downloads here
# Download/unzip images and labels
d='../datasets' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
f='coco128.zip' # or 'coco128-segments.zip', 68 MB
echo 'Downloading' $url$f ' ...'
curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
wait # finish background tasks

View File

@ -1,51 +0,0 @@
#!/bin/bash
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Download ILSVRC2012 ImageNet dataset https://image-net.org
# Example usage: bash data/scripts/get_imagenet.sh
# parent
# ├── ultralytics
# └── datasets
# └── imagenet ← downloads here
# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
if [ "$#" -gt 0 ]; then
for opt in "$@"; do
case "${opt}" in
--train) train=true ;;
--val) val=true ;;
esac
done
else
train=true
val=true
fi
# Make dir
d='../datasets/imagenet' # unzip directory
mkdir -p $d && cd $d
# Download/unzip train
if [ "$train" == "true" ]; then
wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar # download 138G, 1281167 images
mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
tar -xf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME; do
mkdir -p "${NAME%.tar}"
tar -xf "${NAME}" -C "${NAME%.tar}"
rm -f "${NAME}"
done
cd ..
fi
# Download/unzip val
if [ "$val" == "true" ]; then
wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar # download 6.3G, 50000 images
mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xf ILSVRC2012_img_val.tar
wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash # move into subdirs
fi
# Delete corrupted image (optional: PNG under JPEG name that may cause dataloaders to fail)
# rm train/n04266014/n04266014_10835.JPEG
# TFRecords (optional)
# wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt

View File

@ -1,557 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import hashlib
import json
import os
import random
import subprocess
import time
import zipfile
from multiprocessing.pool import ThreadPool
from pathlib import Path
from tarfile import is_tarfile
import cv2
import numpy as np
from PIL import ExifTags, Image, ImageOps
from tqdm import tqdm
from ultralytics.nn.autobackend import check_class_names
from ultralytics.yolo.utils import (DATASETS_DIR, LOGGER, NUM_THREADS, ROOT, SETTINGS_YAML, clean_url, colorstr, emojis,
yaml_load)
from ultralytics.yolo.utils.checks import check_file, check_font, is_ascii
from ultralytics.yolo.utils.downloads import download, safe_download, unzip_file
from ultralytics.yolo.utils.ops import segments2boxes
HELP_URL = 'See https://docs.ultralytics.com/yolov5/tutorials/train_custom_data'
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm' # image suffixes
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv', 'webm' # video suffixes
PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true' # global pin_memory for dataloaders
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
if ExifTags.TAGS[orientation] == 'Orientation':
break
def img2label_paths(img_paths):
"""Define label paths as a function of image paths."""
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
def get_hash(paths):
"""Returns a single hash value of a list of paths (files or dirs)."""
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
h = hashlib.sha256(str(size).encode()) # hash sizes
h.update(''.join(paths).encode()) # hash paths
return h.hexdigest() # return hash
def exif_size(img):
"""Returns exif-corrected PIL size."""
s = img.size # (width, height)
with contextlib.suppress(Exception):
rotation = dict(img._getexif().items())[orientation]
if rotation in [6, 8]: # rotation 270 or 90
s = (s[1], s[0])
return s
def verify_image_label(args):
"""Verify one image-label pair."""
im_file, lb_file, prefix, keypoint, num_cls, nkpt, ndim = args
# Number (missing, found, empty, corrupt), message, segments, keypoints
nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, '', [], None
try:
# Verify images
im = Image.open(im_file)
im.verify() # PIL verify
shape = exif_size(im) # image size
shape = (shape[1], shape[0]) # hw
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
if im.format.lower() in ('jpg', 'jpeg'):
with open(im_file, 'rb') as f:
f.seek(-2, 2)
if f.read() != b'\xff\xd9': # corrupt JPEG
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved'
# Verify labels
if os.path.isfile(lb_file):
nf = 1 # label found
with open(lb_file) as f:
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
if any(len(x) > 6 for x in lb) and (not keypoint): # is segment
classes = np.array([x[0] for x in lb], dtype=np.float32)
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
lb = np.array(lb, dtype=np.float32)
nl = len(lb)
if nl:
if keypoint:
assert lb.shape[1] == (5 + nkpt * ndim), f'labels require {(5 + nkpt * ndim)} columns each'
assert (lb[:, 5::ndim] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
assert (lb[:, 6::ndim] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
else:
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
assert (lb[:, 1:] <= 1).all(), \
f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
# All labels
max_cls = int(lb[:, 0].max()) # max label count
assert max_cls <= num_cls, \
f'Label class {max_cls} exceeds dataset class count {num_cls}. ' \
f'Possible class labels are 0-{num_cls - 1}'
_, i = np.unique(lb, axis=0, return_index=True)
if len(i) < nl: # duplicate row check
lb = lb[i] # remove duplicates
if segments:
segments = [segments[x] for x in i]
msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed'
else:
ne = 1 # label empty
lb = np.zeros((0, (5 + nkpt * ndim)), dtype=np.float32) if keypoint else np.zeros(
(0, 5), dtype=np.float32)
else:
nm = 1 # label missing
lb = np.zeros((0, (5 + nkpt * ndim)), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32)
if keypoint:
keypoints = lb[:, 5:].reshape(-1, nkpt, ndim)
if ndim == 2:
kpt_mask = np.ones(keypoints.shape[:2], dtype=np.float32)
kpt_mask = np.where(keypoints[..., 0] < 0, 0.0, kpt_mask)
kpt_mask = np.where(keypoints[..., 1] < 0, 0.0, kpt_mask)
keypoints = np.concatenate([keypoints, kpt_mask[..., None]], axis=-1) # (nl, nkpt, 3)
lb = lb[:, :5]
return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg
except Exception as e:
nc = 1
msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}'
return [None, None, None, None, None, nm, nf, ne, nc, msg]
def polygon2mask(imgsz, polygons, color=1, downsample_ratio=1):
"""
Args:
imgsz (tuple): The image size.
polygons (list[np.ndarray]): [N, M], N is the number of polygons, M is the number of points(Be divided by 2).
color (int): color
downsample_ratio (int): downsample ratio
"""
mask = np.zeros(imgsz, dtype=np.uint8)
polygons = np.asarray(polygons)
polygons = polygons.astype(np.int32)
shape = polygons.shape
polygons = polygons.reshape(shape[0], -1, 2)
cv2.fillPoly(mask, polygons, color=color)
nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio)
# NOTE: fillPoly firstly then resize is trying the keep the same way
# of loss calculation when mask-ratio=1.
mask = cv2.resize(mask, (nw, nh))
return mask
def polygons2masks(imgsz, polygons, color, downsample_ratio=1):
"""
Args:
imgsz (tuple): The image size.
polygons (list[np.ndarray]): each polygon is [N, M], N is number of polygons, M is number of points (M % 2 = 0)
color (int): color
downsample_ratio (int): downsample ratio
"""
masks = []
for si in range(len(polygons)):
mask = polygon2mask(imgsz, [polygons[si].reshape(-1)], color, downsample_ratio)
masks.append(mask)
return np.array(masks)
def polygons2masks_overlap(imgsz, segments, downsample_ratio=1):
"""Return a (640, 640) overlap mask."""
masks = np.zeros((imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio),
dtype=np.int32 if len(segments) > 255 else np.uint8)
areas = []
ms = []
for si in range(len(segments)):
mask = polygon2mask(imgsz, [segments[si].reshape(-1)], downsample_ratio=downsample_ratio, color=1)
ms.append(mask)
areas.append(mask.sum())
areas = np.asarray(areas)
index = np.argsort(-areas)
ms = np.array(ms)[index]
for i in range(len(segments)):
mask = ms[i] * (i + 1)
masks = masks + mask
masks = np.clip(masks, a_min=0, a_max=i + 1)
return masks, index
def check_det_dataset(dataset, autodownload=True):
"""Download, check and/or unzip dataset if not found locally."""
data = check_file(dataset)
# Download (optional)
extract_dir = ''
if isinstance(data, (str, Path)) and (zipfile.is_zipfile(data) or is_tarfile(data)):
new_dir = safe_download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False)
data = next((DATASETS_DIR / new_dir).rglob('*.yaml'))
extract_dir, autodownload = data.parent, False
# Read yaml (optional)
if isinstance(data, (str, Path)):
data = yaml_load(data, append_filename=True) # dictionary
# Checks
for k in 'train', 'val':
if k not in data:
raise SyntaxError(
emojis(f"{dataset} '{k}:' key missing ❌.\n'train' and 'val' are required in all data YAMLs."))
if 'names' not in data and 'nc' not in data:
raise SyntaxError(emojis(f"{dataset} key missing ❌.\n either 'names' or 'nc' are required in all data YAMLs."))
if 'names' in data and 'nc' in data and len(data['names']) != data['nc']:
raise SyntaxError(emojis(f"{dataset} 'names' length {len(data['names'])} and 'nc: {data['nc']}' must match."))
if 'names' not in data:
data['names'] = [f'class_{i}' for i in range(data['nc'])]
else:
data['nc'] = len(data['names'])
data['names'] = check_class_names(data['names'])
# Resolve paths
path = Path(extract_dir or data.get('path') or Path(data.get('yaml_file', '')).parent) # dataset root
if not path.is_absolute():
path = (DATASETS_DIR / path).resolve()
data['path'] = path # download scripts
for k in 'train', 'val', 'test':
if data.get(k): # prepend path
if isinstance(data[k], str):
x = (path / data[k]).resolve()
if not x.exists() and data[k].startswith('../'):
x = (path / data[k][3:]).resolve()
data[k] = str(x)
else:
data[k] = [str((path / x).resolve()) for x in data[k]]
# Parse yaml
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
if val:
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
if not all(x.exists() for x in val):
name = clean_url(dataset) # dataset name with URL auth stripped
m = f"\nDataset '{name}' images not found ⚠️, missing paths %s" % [str(x) for x in val if not x.exists()]
if s and autodownload:
LOGGER.warning(m)
else:
m += f"\nNote dataset download directory is '{DATASETS_DIR}'. You can update this in '{SETTINGS_YAML}'"
raise FileNotFoundError(m)
t = time.time()
if s.startswith('http') and s.endswith('.zip'): # URL
safe_download(url=s, dir=DATASETS_DIR, delete=True)
r = None # success
elif s.startswith('bash '): # bash script
LOGGER.info(f'Running {s} ...')
r = os.system(s)
else: # python script
r = exec(s, {'yaml': data}) # return None
dt = f'({round(time.time() - t, 1)}s)'
s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f'failure {dt}'
LOGGER.info(f'Dataset download {s}\n')
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf') # download fonts
return data # dictionary
def check_cls_dataset(dataset: str, split=''):
"""
Checks a classification dataset such as Imagenet.
This function accepts a `dataset` name and attempts to retrieve the corresponding dataset information.
If the dataset is not found locally, it attempts to download the dataset from the internet and save it locally.
Args:
dataset (str): The name of the dataset.
split (str, optional): The split of the dataset. Either 'val', 'test', or ''. Defaults to ''.
Returns:
(dict): A dictionary containing the following keys:
- 'train' (Path): The directory path containing the training set of the dataset.
- 'val' (Path): The directory path containing the validation set of the dataset.
- 'test' (Path): The directory path containing the test set of the dataset.
- 'nc' (int): The number of classes in the dataset.
- 'names' (dict): A dictionary of class names in the dataset.
Raises:
FileNotFoundError: If the specified dataset is not found and cannot be downloaded.
"""
dataset = Path(dataset)
data_dir = (dataset if dataset.is_dir() else (DATASETS_DIR / dataset)).resolve()
if not data_dir.is_dir():
LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
t = time.time()
if str(dataset) == 'imagenet':
subprocess.run(f"bash {ROOT / 'yolo/data/scripts/get_imagenet.sh'}", shell=True, check=True)
else:
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip'
download(url, dir=data_dir.parent)
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
LOGGER.info(s)
train_set = data_dir / 'train'
val_set = data_dir / 'val' if (data_dir / 'val').exists() else None # data/test or data/val
test_set = data_dir / 'test' if (data_dir / 'test').exists() else None # data/val or data/test
if split == 'val' and not val_set:
LOGGER.info("WARNING ⚠️ Dataset 'split=val' not found, using 'split=test' instead.")
elif split == 'test' and not test_set:
LOGGER.info("WARNING ⚠️ Dataset 'split=test' not found, using 'split=val' instead.")
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
names = [x.name for x in (data_dir / 'train').iterdir() if x.is_dir()] # class names list
names = dict(enumerate(sorted(names)))
return {'train': train_set, 'val': val_set or test_set, 'test': test_set or val_set, 'nc': nc, 'names': names}
class HUBDatasetStats():
"""
A class for generating HUB dataset JSON and `-hub` dataset directory.
Args:
path (str): Path to data.yaml or data.zip (with data.yaml inside data.zip). Default is 'coco128.yaml'.
task (str): Dataset task. Options are 'detect', 'segment', 'pose', 'classify'. Default is 'detect'.
autodownload (bool): Attempt to download dataset if not found locally. Default is False.
Usage
from ultralytics.yolo.data.utils import HUBDatasetStats
stats = HUBDatasetStats('/Users/glennjocher/Downloads/coco8.zip', task='detect') # detect dataset
stats = HUBDatasetStats('/Users/glennjocher/Downloads/coco8-seg.zip', task='segment') # segment dataset
stats = HUBDatasetStats('/Users/glennjocher/Downloads/coco8-pose.zip', task='pose') # pose dataset
stats.get_json(save=False)
stats.process_images()
"""
def __init__(self, path='coco128.yaml', task='detect', autodownload=False):
"""Initialize class."""
LOGGER.info(f'Starting HUB dataset checks for {path}....')
zipped, data_dir, yaml_path = self._unzip(Path(path))
try:
# data = yaml_load(check_yaml(yaml_path)) # data dict
data = check_det_dataset(yaml_path, autodownload) # data dict
if zipped:
data['path'] = data_dir
except Exception as e:
raise Exception('error/HUB/dataset_stats/yaml_load') from e
self.hub_dir = Path(str(data['path']) + '-hub')
self.im_dir = self.hub_dir / 'images'
self.im_dir.mkdir(parents=True, exist_ok=True) # makes /images
self.stats = {'nc': len(data['names']), 'names': list(data['names'].values())} # statistics dictionary
self.data = data
self.task = task # detect, segment, pose, classify
@staticmethod
def _find_yaml(dir):
"""Return data.yaml file."""
files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) # try root level first and then recursive
assert files, f'No *.yaml file found in {dir}'
if len(files) > 1:
files = [f for f in files if f.stem == dir.stem] # prefer *.yaml files that match dir name
assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed'
assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}'
return files[0]
def _unzip(self, path):
"""Unzip data.zip."""
if not str(path).endswith('.zip'): # path is data.yaml
return False, None, path
unzip_dir = unzip_file(path, path=path.parent)
assert unzip_dir.is_dir(), f'Error unzipping {path}, {unzip_dir} not found. ' \
f'path/to/abc.zip MUST unzip to path/to/abc/'
return True, str(unzip_dir), self._find_yaml(unzip_dir) # zipped, data_dir, yaml_path
def _hub_ops(self, f):
"""Saves a compressed image for HUB previews."""
compress_one_image(f, self.im_dir / Path(f).name) # save to dataset-hub
def get_json(self, save=False, verbose=False):
"""Return dataset JSON for Ultralytics HUB."""
from ultralytics.yolo.data import YOLODataset # ClassificationDataset
def _round(labels):
"""Update labels to integer class and 4 decimal place floats."""
if self.task == 'detect':
coordinates = labels['bboxes']
elif self.task == 'segment':
coordinates = [x.flatten() for x in labels['segments']]
elif self.task == 'pose':
n = labels['keypoints'].shape[0]
coordinates = np.concatenate((labels['bboxes'], labels['keypoints'].reshape(n, -1)), 1)
else:
raise ValueError('Undefined dataset task.')
zipped = zip(labels['cls'], coordinates)
return [[int(c), *(round(float(x), 4) for x in points)] for c, points in zipped]
for split in 'train', 'val', 'test':
if self.data.get(split) is None:
self.stats[split] = None # i.e. no test set
continue
dataset = YOLODataset(img_path=self.data[split],
data=self.data,
use_segments=self.task == 'segment',
use_keypoints=self.task == 'pose')
x = np.array([
np.bincount(label['cls'].astype(int).flatten(), minlength=self.data['nc'])
for label in tqdm(dataset.labels, total=len(dataset), desc='Statistics')]) # shape(128x80)
self.stats[split] = {
'instance_stats': {
'total': int(x.sum()),
'per_class': x.sum(0).tolist()},
'image_stats': {
'total': len(dataset),
'unlabelled': int(np.all(x == 0, 1).sum()),
'per_class': (x > 0).sum(0).tolist()},
'labels': [{
Path(k).name: _round(v)} for k, v in zip(dataset.im_files, dataset.labels)]}
# Save, print and return
if save:
stats_path = self.hub_dir / 'stats.json'
LOGGER.info(f'Saving {stats_path.resolve()}...')
with open(stats_path, 'w') as f:
json.dump(self.stats, f) # save stats.json
if verbose:
LOGGER.info(json.dumps(self.stats, indent=2, sort_keys=False))
return self.stats
def process_images(self):
"""Compress images for Ultralytics HUB."""
from ultralytics.yolo.data import YOLODataset # ClassificationDataset
for split in 'train', 'val', 'test':
if self.data.get(split) is None:
continue
dataset = YOLODataset(img_path=self.data[split], data=self.data)
with ThreadPool(NUM_THREADS) as pool:
for _ in tqdm(pool.imap(self._hub_ops, dataset.im_files), total=len(dataset), desc=f'{split} images'):
pass
LOGGER.info(f'Done. All images saved to {self.im_dir}')
return self.im_dir
def compress_one_image(f, f_new=None, max_dim=1920, quality=50):
"""
Compresses a single image file to reduced size while preserving its aspect ratio and quality using either the
Python Imaging Library (PIL) or OpenCV library. If the input image is smaller than the maximum dimension, it will
not be resized.
Args:
f (str): The path to the input image file.
f_new (str, optional): The path to the output image file. If not specified, the input file will be overwritten.
max_dim (int, optional): The maximum dimension (width or height) of the output image. Default is 1920 pixels.
quality (int, optional): The image compression quality as a percentage. Default is 50%.
Usage:
from pathlib import Path
from ultralytics.yolo.data.utils import compress_one_image
for f in Path('/Users/glennjocher/Downloads/dataset').rglob('*.jpg'):
compress_one_image(f)
"""
try: # use PIL
im = Image.open(f)
r = max_dim / max(im.height, im.width) # ratio
if r < 1.0: # image too large
im = im.resize((int(im.width * r), int(im.height * r)))
im.save(f_new or f, 'JPEG', quality=quality, optimize=True) # save
except Exception as e: # use OpenCV
LOGGER.info(f'WARNING ⚠️ HUB ops PIL failure {f}: {e}')
im = cv2.imread(f)
im_height, im_width = im.shape[:2]
r = max_dim / max(im_height, im_width) # ratio
if r < 1.0: # image too large
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
cv2.imwrite(str(f_new or f), im)
def delete_dsstore(path):
"""
Deletes all ".DS_store" files under a specified directory.
Args:
path (str, optional): The directory path where the ".DS_store" files should be deleted.
Usage:
from ultralytics.yolo.data.utils import delete_dsstore
delete_dsstore('/Users/glennjocher/Downloads/dataset')
Note:
".DS_store" files are created by the Apple operating system and contain metadata about folders and files. They
are hidden system files and can cause issues when transferring files between different operating systems.
"""
# Delete Apple .DS_store files
files = list(Path(path).rglob('.DS_store'))
LOGGER.info(f'Deleting *.DS_store files: {files}')
for f in files:
f.unlink()
def zip_directory(dir, use_zipfile_library=True):
"""
Zips a directory and saves the archive to the specified output path.
Args:
dir (str): The path to the directory to be zipped.
use_zipfile_library (bool): Whether to use zipfile library or shutil for zipping.
Usage:
from ultralytics.yolo.data.utils import zip_directory
zip_directory('/Users/glennjocher/Downloads/playground')
zip -r coco8-pose.zip coco8-pose
"""
delete_dsstore(dir)
if use_zipfile_library:
dir = Path(dir)
with zipfile.ZipFile(dir.with_suffix('.zip'), 'w', zipfile.ZIP_DEFLATED) as zip_file:
for file_path in dir.glob('**/*'):
if file_path.is_file():
zip_file.write(file_path, file_path.relative_to(dir))
else:
import shutil
shutil.make_archive(dir, 'zip', dir)
def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
"""
Autosplit a dataset into train/val/test splits and save the resulting splits into autosplit_*.txt files.
Args:
path (Path, optional): Path to images directory. Defaults to DATASETS_DIR / 'coco128/images'.
weights (list | tuple, optional): Train, validation, and test split fractions. Defaults to (0.9, 0.1, 0.0).
annotated_only (bool, optional): If True, only images with an associated txt file are used. Defaults to False.
Usage:
from utils.dataloaders import autosplit
autosplit()
"""
path = Path(path) # images dir
files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only
n = len(files) # number of files
random.seed(0) # for reproducibility
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
for x in txt:
if (path.parent / x).exists():
(path.parent / x).unlink() # remove existing
LOGGER.info(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
for i, img in tqdm(zip(indices, files), total=n):
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
with open(path.parent / txt[i], 'a') as f:
f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n') # add image to txt file

View File

@ -0,0 +1,10 @@
import importlib
import sys
from ultralytics.utils import LOGGER
# Set modules in sys.modules under their old name
sys.modules['ultralytics.yolo.engine'] = importlib.import_module('ultralytics.engine')
LOGGER.warning("WARNING ⚠️ 'ultralytics.yolo.engine' is deprecated since '8.0.136' and will be removed in '8.1.0'. "
"Please use 'ultralytics.engine' instead.")

View File

@ -1,926 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Export a YOLOv8 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
Format | `format=argument` | Model
--- | --- | ---
PyTorch | - | yolov8n.pt
TorchScript | `torchscript` | yolov8n.torchscript
ONNX | `onnx` | yolov8n.onnx
OpenVINO | `openvino` | yolov8n_openvino_model/
TensorRT | `engine` | yolov8n.engine
CoreML | `coreml` | yolov8n.mlmodel
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/
TensorFlow GraphDef | `pb` | yolov8n.pb
TensorFlow Lite | `tflite` | yolov8n.tflite
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov8n_web_model/
PaddlePaddle | `paddle` | yolov8n_paddle_model/
NCNN | `ncnn` | yolov8n_ncnn_model/
Requirements:
$ pip install ultralytics[export]
Python:
from ultralytics import YOLO
model = YOLO('yolov8n.pt')
results = model.export(format='onnx')
CLI:
$ yolo mode=export model=yolov8n.pt format=onnx
Inference:
$ yolo predict model=yolov8n.pt # PyTorch
yolov8n.torchscript # TorchScript
yolov8n.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov8n_openvino_model # OpenVINO
yolov8n.engine # TensorRT
yolov8n.mlmodel # CoreML (macOS-only)
yolov8n_saved_model # TensorFlow SavedModel
yolov8n.pb # TensorFlow GraphDef
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
TensorFlow.js:
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
$ npm install
$ ln -s ../../yolov5/yolov8n_web_model public/yolov8n_web_model
$ npm start
"""
import json
import os
import shutil
import subprocess
import time
import warnings
from copy import deepcopy
from datetime import datetime
from pathlib import Path
import torch
from ultralytics.nn.autobackend import check_class_names
from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder
from ultralytics.nn.tasks import DetectionModel, SegmentationModel
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.utils import (ARM64, DEFAULT_CFG, LINUX, LOGGER, MACOS, ROOT, __version__, callbacks, colorstr,
get_default_args, yaml_save)
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version
from ultralytics.yolo.utils.downloads import attempt_download_asset, get_github_assets
from ultralytics.yolo.utils.files import file_size
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import get_latest_opset, select_device, smart_inference_mode
def export_formats():
"""YOLOv8 export formats."""
import pandas
x = [
['PyTorch', '-', '.pt', True, True],
['TorchScript', 'torchscript', '.torchscript', True, True],
['ONNX', 'onnx', '.onnx', True, True],
['OpenVINO', 'openvino', '_openvino_model', True, False],
['TensorRT', 'engine', '.engine', False, True],
['CoreML', 'coreml', '.mlmodel', True, False],
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
['TensorFlow GraphDef', 'pb', '.pb', True, True],
['TensorFlow Lite', 'tflite', '.tflite', True, False],
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', True, False],
['TensorFlow.js', 'tfjs', '_web_model', True, False],
['PaddlePaddle', 'paddle', '_paddle_model', True, True],
['NCNN', 'ncnn', '_ncnn_model', True, True], ]
return pandas.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
def gd_outputs(gd):
"""TensorFlow GraphDef model output node names."""
name_list, input_list = [], []
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
name_list.append(node.name)
input_list.extend(node.input)
return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))
def try_export(inner_func):
"""YOLOv8 export decorator, i..e @try_export."""
inner_args = get_default_args(inner_func)
def outer_func(*args, **kwargs):
"""Export a model."""
prefix = inner_args['prefix']
try:
with Profile() as dt:
f, model = inner_func(*args, **kwargs)
LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
return f, model
except Exception as e:
LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
return None, None
return outer_func
class Exporter:
"""
A class for exporting a model.
Attributes:
args (SimpleNamespace): Configuration for the exporter.
save_dir (Path): Directory to save results.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initializes the Exporter class.
Args:
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
overrides (dict, optional): Configuration overrides. Defaults to None.
_callbacks (list, optional): List of callback functions. Defaults to None.
"""
self.args = get_cfg(cfg, overrides)
self.callbacks = _callbacks or callbacks.get_default_callbacks()
callbacks.add_integration_callbacks(self)
@smart_inference_mode()
def __call__(self, model=None):
"""Returns list of exported files/dirs after running callbacks."""
self.run_callbacks('on_export_start')
t = time.time()
format = self.args.format.lower() # to lowercase
if format in ('tensorrt', 'trt'): # engine aliases
format = 'engine'
fmts = tuple(export_formats()['Argument'][1:]) # available export formats
flags = [x == format for x in fmts]
if sum(flags) != 1:
raise ValueError(f"Invalid export format='{format}'. Valid formats are {fmts}")
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn = flags # export booleans
# Load PyTorch model
self.device = select_device('cpu' if self.args.device is None else self.args.device)
# Checks
model.names = check_class_names(model.names)
if self.args.half and onnx and self.device.type == 'cpu':
LOGGER.warning('WARNING ⚠️ half=True only compatible with GPU export, i.e. use device=0')
self.args.half = False
assert not self.args.dynamic, 'half=True not compatible with dynamic=True, i.e. use only one.'
self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size
if self.args.optimize:
assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False"
assert self.device.type == 'cpu', "optimize=True not compatible with cuda devices, i.e. use device='cpu'"
if edgetpu and not LINUX:
raise SystemError('Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler/')
# Input
im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device)
file = Path(
getattr(model, 'pt_path', None) or getattr(model, 'yaml_file', None) or model.yaml.get('yaml_file', ''))
if file.suffix == '.yaml':
file = Path(file.name)
# Update model
model = deepcopy(model).to(self.device)
for p in model.parameters():
p.requires_grad = False
model.eval()
model.float()
model = model.fuse()
for k, m in model.named_modules():
if isinstance(m, (Detect, RTDETRDecoder)): # Segment and Pose use Detect base class
m.dynamic = self.args.dynamic
m.export = True
m.format = self.args.format
elif isinstance(m, C2f) and not any((saved_model, pb, tflite, edgetpu, tfjs)):
# EdgeTPU does not support FlexSplitV while split provides cleaner ONNX graph
m.forward = m.forward_split
y = None
for _ in range(2):
y = model(im) # dry runs
if self.args.half and (engine or onnx) and self.device.type != 'cpu':
im, model = im.half(), model.half() # to FP16
# Filter warnings
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
warnings.filterwarnings('ignore', category=UserWarning) # suppress shape prim::Constant missing ONNX warning
warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress CoreML np.bool deprecation warning
# Assign
self.im = im
self.model = model
self.file = file
self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else \
tuple(tuple(x.shape if isinstance(x, torch.Tensor) else []) for x in y)
self.pretty_name = Path(self.model.yaml.get('yaml_file', self.file)).stem.replace('yolo', 'YOLO')
trained_on = f'trained on {Path(self.args.data).name}' if self.args.data else '(untrained)'
description = f'Ultralytics {self.pretty_name} model {trained_on}'
self.metadata = {
'description': description,
'author': 'Ultralytics',
'license': 'AGPL-3.0 https://ultralytics.com/license',
'date': datetime.now().isoformat(),
'version': __version__,
'stride': int(max(model.stride)),
'task': model.task,
'batch': self.args.batch,
'imgsz': self.imgsz,
'names': model.names} # model metadata
if model.task == 'pose':
self.metadata['kpt_shape'] = model.model[-1].kpt_shape
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with input shape {tuple(im.shape)} BCHW and "
f'output shape(s) {self.output_shape} ({file_size(file):.1f} MB)')
# Exports
f = [''] * len(fmts) # exported filenames
if jit or ncnn: # TorchScript
f[0], _ = self.export_torchscript()
if engine: # TensorRT required before ONNX
f[1], _ = self.export_engine()
if onnx or xml: # OpenVINO requires ONNX
f[2], _ = self.export_onnx()
if xml: # OpenVINO
f[3], _ = self.export_openvino()
if coreml: # CoreML
f[4], _ = self.export_coreml()
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
self.args.int8 |= edgetpu
f[5], s_model = self.export_saved_model()
if pb or tfjs: # pb prerequisite to tfjs
f[6], _ = self.export_pb(s_model)
if tflite:
f[7], _ = self.export_tflite(s_model, nms=False, agnostic_nms=self.args.agnostic_nms)
if edgetpu:
f[8], _ = self.export_edgetpu(tflite_model=Path(f[5]) / f'{self.file.stem}_full_integer_quant.tflite')
if tfjs:
f[9], _ = self.export_tfjs()
if paddle: # PaddlePaddle
f[10], _ = self.export_paddle()
if ncnn: # NCNN
f[11], _ = self.export_ncnn()
# Finish
f = [str(x) for x in f if x] # filter out '' and None
if any(f):
f = str(Path(f[-1]))
square = self.imgsz[0] == self.imgsz[1]
s = '' if square else f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not " \
f"work. Use export 'imgsz={max(self.imgsz)}' if val is required."
imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(' ', '')
data = f'data={self.args.data}' if model.task == 'segment' and format == 'pb' else ''
LOGGER.info(
f'\nExport complete ({time.time() - t:.1f}s)'
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
f'\nPredict: yolo predict task={model.task} model={f} imgsz={imgsz} {data}'
f'\nValidate: yolo val task={model.task} model={f} imgsz={imgsz} data={self.args.data} {s}'
f'\nVisualize: https://netron.app')
self.run_callbacks('on_export_end')
return f # return list of exported files/dirs
@try_export
def export_torchscript(self, prefix=colorstr('TorchScript:')):
"""YOLOv8 TorchScript model export."""
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
f = self.file.with_suffix('.torchscript')
ts = torch.jit.trace(self.model, self.im, strict=False)
extra_files = {'config.txt': json.dumps(self.metadata)} # torch._C.ExtraFilesMap()
if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
LOGGER.info(f'{prefix} optimizing for mobile...')
from torch.utils.mobile_optimizer import optimize_for_mobile
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
else:
ts.save(str(f), _extra_files=extra_files)
return f, None
@try_export
def export_onnx(self, prefix=colorstr('ONNX:')):
"""YOLOv8 ONNX export."""
requirements = ['onnx>=1.12.0']
if self.args.simplify:
requirements += ['onnxsim>=0.4.17', 'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime']
check_requirements(requirements)
import onnx # noqa
opset_version = self.args.opset or get_latest_opset()
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__} opset {opset_version}...')
f = str(self.file.with_suffix('.onnx'))
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
dynamic = self.args.dynamic
if dynamic:
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
if isinstance(self.model, SegmentationModel):
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
torch.onnx.export(
self.model.cpu() if dynamic else self.model, # --dynamic only compatible with cpu
self.im.cpu() if dynamic else self.im,
f,
verbose=False,
opset_version=opset_version,
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
input_names=['images'],
output_names=output_names,
dynamic_axes=dynamic or None)
# Checks
model_onnx = onnx.load(f) # load onnx model
# onnx.checker.check_model(model_onnx) # check onnx model
# Simplify
if self.args.simplify:
try:
import onnxsim
LOGGER.info(f'{prefix} simplifying with onnxsim {onnxsim.__version__}...')
# subprocess.run(f'onnxsim {f} {f}', shell=True)
model_onnx, check = onnxsim.simplify(model_onnx)
assert check, 'Simplified ONNX model could not be validated'
except Exception as e:
LOGGER.info(f'{prefix} simplifier failure: {e}')
# Metadata
for k, v in self.metadata.items():
meta = model_onnx.metadata_props.add()
meta.key, meta.value = k, str(v)
onnx.save(model_onnx, f)
return f, model_onnx
@try_export
def export_openvino(self, prefix=colorstr('OpenVINO:')):
"""YOLOv8 OpenVINO export."""
check_requirements('openvino-dev>=2023.0') # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.runtime as ov # noqa
from openvino.tools import mo # noqa
LOGGER.info(f'\n{prefix} starting export with openvino {ov.__version__}...')
f = str(self.file).replace(self.file.suffix, f'_openvino_model{os.sep}')
f_onnx = self.file.with_suffix('.onnx')
f_ov = str(Path(f) / self.file.with_suffix('.xml').name)
ov_model = mo.convert_model(f_onnx,
model_name=self.pretty_name,
framework='onnx',
compress_to_fp16=self.args.half) # export
# Set RT info
ov_model.set_rt_info('YOLOv8', ['model_info', 'model_type'])
ov_model.set_rt_info(True, ['model_info', 'reverse_input_channels'])
ov_model.set_rt_info(114, ['model_info', 'pad_value'])
ov_model.set_rt_info([255.0], ['model_info', 'scale_values'])
ov_model.set_rt_info(self.args.iou, ['model_info', 'iou_threshold'])
ov_model.set_rt_info([v.replace(' ', '_') for k, v in sorted(self.model.names.items())],
['model_info', 'labels'])
if self.model.task != 'classify':
ov_model.set_rt_info('fit_to_window_letterbox', ['model_info', 'resize_type'])
ov.serialize(ov_model, f_ov) # save
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
return f, None
@try_export
def export_paddle(self, prefix=colorstr('PaddlePaddle:')):
"""YOLOv8 Paddle export."""
check_requirements(('paddlepaddle', 'x2paddle'))
import x2paddle # noqa
from x2paddle.convert import pytorch2paddle # noqa
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
f = str(self.file).replace(self.file.suffix, f'_paddle_model{os.sep}')
pytorch2paddle(module=self.model, save_dir=f, jit_type='trace', input_examples=[self.im]) # export
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
return f, None
@try_export
def export_ncnn(self, prefix=colorstr('NCNN:')):
"""
YOLOv8 NCNN export using PNNX https://github.com/pnnx/pnnx.
"""
check_requirements('git+https://github.com/Tencent/ncnn.git' if ARM64 else 'ncnn') # requires NCNN
import ncnn # noqa
LOGGER.info(f'\n{prefix} starting export with NCNN {ncnn.__version__}...')
f = Path(str(self.file).replace(self.file.suffix, f'_ncnn_model{os.sep}'))
f_ts = str(self.file.with_suffix('.torchscript'))
if Path('./pnnx').is_file():
pnnx = './pnnx'
elif (ROOT / 'pnnx').is_file():
pnnx = ROOT / 'pnnx'
else:
LOGGER.warning(
f'{prefix} WARNING ⚠️ PNNX not found. Attempting to download binary file from '
'https://github.com/pnnx/pnnx/.\nNote PNNX Binary file must be placed in current working directory '
f'or in {ROOT}. See PNNX repo for full installation instructions.')
_, assets = get_github_assets(repo='pnnx/pnnx')
asset = [x for x in assets if ('macos' if MACOS else 'ubuntu' if LINUX else 'windows') in x][0]
attempt_download_asset(asset, repo='pnnx/pnnx', release='latest')
unzip_dir = Path(asset).with_suffix('')
pnnx = ROOT / 'pnnx' # new location
(unzip_dir / 'pnnx').rename(pnnx) # move binary to ROOT
shutil.rmtree(unzip_dir) # delete unzip dir
Path(asset).unlink() # delete zip
pnnx.chmod(0o777) # set read, write, and execute permissions for everyone
cmd = [
str(pnnx),
f_ts,
f'pnnxparam={f / "model.pnnx.param"}',
f'pnnxbin={f / "model.pnnx.bin"}',
f'pnnxpy={f / "model_pnnx.py"}',
f'pnnxonnx={f / "model.pnnx.onnx"}',
f'ncnnparam={f / "model.ncnn.param"}',
f'ncnnbin={f / "model.ncnn.bin"}',
f'ncnnpy={f / "model_ncnn.py"}',
f'fp16={int(self.args.half)}',
f'device={self.device.type}',
f'inputshape="{[self.args.batch, 3, *self.imgsz]}"', ]
f.mkdir(exist_ok=True) # make ncnn_model directory
LOGGER.info(f"{prefix} running '{' '.join(cmd)}'")
subprocess.run(cmd, check=True)
for f_debug in 'debug.bin', 'debug.param', 'debug2.bin', 'debug2.param': # remove debug files
Path(f_debug).unlink(missing_ok=True)
yaml_save(f / 'metadata.yaml', self.metadata) # add metadata.yaml
return str(f), None
@try_export
def export_coreml(self, prefix=colorstr('CoreML:')):
"""YOLOv8 CoreML export."""
check_requirements('coremltools>=6.0')
import coremltools as ct # noqa
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
f = self.file.with_suffix('.mlmodel')
bias = [0.0, 0.0, 0.0]
scale = 1 / 255
classifier_config = None
if self.model.task == 'classify':
classifier_config = ct.ClassifierConfig(list(self.model.names.values())) if self.args.nms else None
model = self.model
elif self.model.task == 'detect':
model = iOSDetectModel(self.model, self.im) if self.args.nms else self.model
else:
# TODO CoreML Segment and Pose model pipelining
model = self.model
ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model
ct_model = ct.convert(ts,
inputs=[ct.ImageType('image', shape=self.im.shape, scale=scale, bias=bias)],
classifier_config=classifier_config)
bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None)
if bits < 32:
if 'kmeans' in mode:
check_requirements('scikit-learn') # scikit-learn package required for k-means quantization
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
if self.args.nms and self.model.task == 'detect':
ct_model = self._pipeline_coreml(ct_model)
m = self.metadata # metadata dict
ct_model.short_description = m.pop('description')
ct_model.author = m.pop('author')
ct_model.license = m.pop('license')
ct_model.version = m.pop('version')
ct_model.user_defined_metadata.update({k: str(v) for k, v in m.items()})
ct_model.save(str(f))
return f, ct_model
@try_export
def export_engine(self, prefix=colorstr('TensorRT:')):
"""YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt."""
assert self.im.device.type != 'cpu', "export running on CPU but must be on GPU, i.e. use 'device=0'"
try:
import tensorrt as trt # noqa
except ImportError:
if LINUX:
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
import tensorrt as trt # noqa
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
self.args.simplify = True
f_onnx, _ = self.export_onnx()
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
assert Path(f_onnx).exists(), f'failed to export ONNX file: {f_onnx}'
f = self.file.with_suffix('.engine') # TensorRT engine file
logger = trt.Logger(trt.Logger.INFO)
if self.args.verbose:
logger.min_severity = trt.Logger.Severity.VERBOSE
builder = trt.Builder(logger)
config = builder.create_builder_config()
config.max_workspace_size = self.args.workspace * 1 << 30
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
network = builder.create_network(flag)
parser = trt.OnnxParser(network, logger)
if not parser.parse_from_file(f_onnx):
raise RuntimeError(f'failed to load ONNX file: {f_onnx}')
inputs = [network.get_input(i) for i in range(network.num_inputs)]
outputs = [network.get_output(i) for i in range(network.num_outputs)]
for inp in inputs:
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
for out in outputs:
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
if self.args.dynamic:
shape = self.im.shape
if shape[0] <= 1:
LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument')
profile = builder.create_optimization_profile()
for inp in inputs:
profile.set_shape(inp.name, (1, *shape[1:]), (max(1, shape[0] // 2), *shape[1:]), shape)
config.add_optimization_profile(profile)
LOGGER.info(
f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and self.args.half else 32} engine as {f}')
if builder.platform_has_fast_fp16 and self.args.half:
config.set_flag(trt.BuilderFlag.FP16)
# Write file
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
# Metadata
meta = json.dumps(self.metadata)
t.write(len(meta).to_bytes(4, byteorder='little', signed=True))
t.write(meta.encode())
# Model
t.write(engine.serialize())
return f, None
@try_export
def export_saved_model(self, prefix=colorstr('TensorFlow SavedModel:')):
"""YOLOv8 TensorFlow SavedModel export."""
try:
import tensorflow as tf # noqa
except ImportError:
cuda = torch.cuda.is_available()
check_requirements(f"tensorflow{'-macos' if MACOS else '-aarch64' if ARM64 else '' if cuda else '-cpu'}")
import tensorflow as tf # noqa
check_requirements(('onnx', 'onnx2tf>=1.7.7', 'sng4onnx>=1.0.1', 'onnxsim>=0.4.17', 'onnx_graphsurgeon>=0.3.26',
'tflite_support', 'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime'),
cmds='--extra-index-url https://pypi.ngc.nvidia.com')
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
f = Path(str(self.file).replace(self.file.suffix, '_saved_model'))
if f.is_dir():
import shutil
shutil.rmtree(f) # delete output folder
# Export to ONNX
self.args.simplify = True
f_onnx, _ = self.export_onnx()
# Export to TF
int8 = '-oiqt -qt per-tensor' if self.args.int8 else ''
cmd = f'onnx2tf -i {f_onnx} -o {f} -nuo --non_verbose {int8}'
LOGGER.info(f"\n{prefix} running '{cmd.strip()}'")
subprocess.run(cmd, shell=True)
yaml_save(f / 'metadata.yaml', self.metadata) # add metadata.yaml
# Remove/rename TFLite models
if self.args.int8:
for file in f.rglob('*_dynamic_range_quant.tflite'):
file.rename(file.with_name(file.stem.replace('_dynamic_range_quant', '_int8') + file.suffix))
for file in f.rglob('*_integer_quant_with_int16_act.tflite'):
file.unlink() # delete extra fp16 activation TFLite files
# Add TFLite metadata
for file in f.rglob('*.tflite'):
f.unlink() if 'quant_with_int16_act.tflite' in str(f) else self._add_tflite_metadata(file)
# Load saved_model
keras_model = tf.saved_model.load(f, tags=None, options=None)
return str(f), keras_model
@try_export
def export_pb(self, keras_model, prefix=colorstr('TensorFlow GraphDef:')):
"""YOLOv8 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow."""
import tensorflow as tf # noqa
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
f = self.file.with_suffix('.pb')
m = tf.function(lambda x: keras_model(x)) # full model
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
frozen_func = convert_variables_to_constants_v2(m)
frozen_func.graph.as_graph_def()
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
return f, None
@try_export
def export_tflite(self, keras_model, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
"""YOLOv8 TensorFlow Lite export."""
import tensorflow as tf # noqa
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
saved_model = Path(str(self.file).replace(self.file.suffix, '_saved_model'))
if self.args.int8:
f = saved_model / f'{self.file.stem}_int8.tflite' # fp32 in/out
elif self.args.half:
f = saved_model / f'{self.file.stem}_float16.tflite' # fp32 in/out
else:
f = saved_model / f'{self.file.stem}_float32.tflite'
return str(f), None
@try_export
def export_edgetpu(self, tflite_model='', prefix=colorstr('Edge TPU:')):
"""YOLOv8 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/."""
LOGGER.warning(f'{prefix} WARNING ⚠️ Edge TPU known bug https://github.com/ultralytics/ultralytics/issues/1185')
cmd = 'edgetpu_compiler --version'
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
assert LINUX, f'export only supported on Linux. See {help_url}'
if subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True).returncode != 0:
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
for c in (
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
f = str(tflite_model).replace('.tflite', '_edgetpu.tflite') # Edge TPU model
cmd = f'edgetpu_compiler -s -d -k 10 --out_dir {Path(f).parent} {tflite_model}'
LOGGER.info(f"{prefix} running '{cmd}'")
subprocess.run(cmd.split(), check=True)
self._add_tflite_metadata(f)
return f, None
@try_export
def export_tfjs(self, prefix=colorstr('TensorFlow.js:')):
"""YOLOv8 TensorFlow.js export."""
check_requirements('tensorflowjs')
import tensorflow as tf
import tensorflowjs as tfjs # noqa
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
f = str(self.file).replace(self.file.suffix, '_web_model') # js dir
f_pb = self.file.with_suffix('.pb') # *.pb path
gd = tf.Graph().as_graph_def() # TF GraphDef
with open(f_pb, 'rb') as file:
gd.ParseFromString(file.read())
outputs = ','.join(gd_outputs(gd))
LOGGER.info(f'\n{prefix} output node names: {outputs}')
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model --output_node_names={outputs} {f_pb} {f}'
subprocess.run(cmd.split(), check=True)
# f_json = Path(f) / 'model.json' # *.json path
# with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
# subst = re.sub(
# r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
# r'"Identity.?.?": {"name": "Identity.?.?"}, '
# r'"Identity.?.?": {"name": "Identity.?.?"}, '
# r'"Identity.?.?": {"name": "Identity.?.?"}}}',
# r'{"outputs": {"Identity": {"name": "Identity"}, '
# r'"Identity_1": {"name": "Identity_1"}, '
# r'"Identity_2": {"name": "Identity_2"}, '
# r'"Identity_3": {"name": "Identity_3"}}}',
# f_json.read_text(),
# )
# j.write(subst)
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
return f, None
def _add_tflite_metadata(self, file):
"""Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata."""
from tflite_support import flatbuffers # noqa
from tflite_support import metadata as _metadata # noqa
from tflite_support import metadata_schema_py_generated as _metadata_fb # noqa
# Create model info
model_meta = _metadata_fb.ModelMetadataT()
model_meta.name = self.metadata['description']
model_meta.version = self.metadata['version']
model_meta.author = self.metadata['author']
model_meta.license = self.metadata['license']
# Label file
tmp_file = Path(file).parent / 'temp_meta.txt'
with open(tmp_file, 'w') as f:
f.write(str(self.metadata))
label_file = _metadata_fb.AssociatedFileT()
label_file.name = tmp_file.name
label_file.type = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS
# Create input info
input_meta = _metadata_fb.TensorMetadataT()
input_meta.name = 'image'
input_meta.description = 'Input image to be detected.'
input_meta.content = _metadata_fb.ContentT()
input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT()
input_meta.content.contentProperties.colorSpace = _metadata_fb.ColorSpaceType.RGB
input_meta.content.contentPropertiesType = _metadata_fb.ContentProperties.ImageProperties
# Create output info
output1 = _metadata_fb.TensorMetadataT()
output1.name = 'output'
output1.description = 'Coordinates of detected objects, class labels, and confidence score'
output1.associatedFiles = [label_file]
if self.model.task == 'segment':
output2 = _metadata_fb.TensorMetadataT()
output2.name = 'output'
output2.description = 'Mask protos'
output2.associatedFiles = [label_file]
# Create subgraph info
subgraph = _metadata_fb.SubGraphMetadataT()
subgraph.inputTensorMetadata = [input_meta]
subgraph.outputTensorMetadata = [output1, output2] if self.model.task == 'segment' else [output1]
model_meta.subgraphMetadata = [subgraph]
b = flatbuffers.Builder(0)
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
metadata_buf = b.Output()
populator = _metadata.MetadataPopulator.with_model_file(str(file))
populator.load_metadata_buffer(metadata_buf)
populator.load_associated_files([str(tmp_file)])
populator.populate()
tmp_file.unlink()
def _pipeline_coreml(self, model, prefix=colorstr('CoreML Pipeline:')):
"""YOLOv8 CoreML pipeline."""
import coremltools as ct # noqa
LOGGER.info(f'{prefix} starting pipeline with coremltools {ct.__version__}...')
batch_size, ch, h, w = list(self.im.shape) # BCHW
# Output shapes
spec = model.get_spec()
out0, out1 = iter(spec.description.output)
if MACOS:
from PIL import Image
img = Image.new('RGB', (w, h)) # img(192 width, 320 height)
# img = torch.zeros((*opt.img_size, 3)).numpy() # img size(320,192,3) iDetection
out = model.predict({'image': img})
out0_shape = out[out0.name].shape
out1_shape = out[out1.name].shape
else: # linux and windows can not run model.predict(), get sizes from pytorch output y
out0_shape = self.output_shape[2], self.output_shape[1] - 4 # (3780, 80)
out1_shape = self.output_shape[2], 4 # (3780, 4)
# Checks
names = self.metadata['names']
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
na, nc = out0_shape
# na, nc = out0.type.multiArrayType.shape # number anchors, classes
assert len(names) == nc, f'{len(names)} names found for nc={nc}' # check
# Define output shapes (missing)
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80)
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4)
# spec.neuralNetwork.preprocessing[0].featureName = '0'
# Flexible input shapes
# from coremltools.models.neural_network import flexible_shape_utils
# s = [] # shapes
# s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192))
# s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width)
# flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s)
# r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges
# r.add_height_range((192, 640))
# r.add_width_range((192, 640))
# flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)
# Print
# print(spec.description)
# Model from spec
model = ct.models.MLModel(spec)
# 3. Create NMS protobuf
nms_spec = ct.proto.Model_pb2.Model()
nms_spec.specificationVersion = 5
for i in range(2):
decoder_output = model._spec.description.output[i].SerializeToString()
nms_spec.description.input.add()
nms_spec.description.input[i].ParseFromString(decoder_output)
nms_spec.description.output.add()
nms_spec.description.output[i].ParseFromString(decoder_output)
nms_spec.description.output[0].name = 'confidence'
nms_spec.description.output[1].name = 'coordinates'
output_sizes = [nc, 4]
for i in range(2):
ma_type = nms_spec.description.output[i].type.multiArrayType
ma_type.shapeRange.sizeRanges.add()
ma_type.shapeRange.sizeRanges[0].lowerBound = 0
ma_type.shapeRange.sizeRanges[0].upperBound = -1
ma_type.shapeRange.sizeRanges.add()
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
del ma_type.shape[:]
nms = nms_spec.nonMaximumSuppression
nms.confidenceInputFeatureName = out0.name # 1x507x80
nms.coordinatesInputFeatureName = out1.name # 1x507x4
nms.confidenceOutputFeatureName = 'confidence'
nms.coordinatesOutputFeatureName = 'coordinates'
nms.iouThresholdInputFeatureName = 'iouThreshold'
nms.confidenceThresholdInputFeatureName = 'confidenceThreshold'
nms.iouThreshold = 0.45
nms.confidenceThreshold = 0.25
nms.pickTop.perClass = True
nms.stringClassLabels.vector.extend(names.values())
nms_model = ct.models.MLModel(nms_spec)
# 4. Pipeline models together
pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)),
('iouThreshold', ct.models.datatypes.Double()),
('confidenceThreshold', ct.models.datatypes.Double())],
output_features=['confidence', 'coordinates'])
pipeline.add_model(model)
pipeline.add_model(nms_model)
# Correct datatypes
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
# Update metadata
pipeline.spec.specificationVersion = 5
pipeline.spec.description.metadata.userDefined.update({
'IoU threshold': str(nms.iouThreshold),
'Confidence threshold': str(nms.confidenceThreshold)})
# Save the model
model = ct.models.MLModel(pipeline.spec)
model.input_description['image'] = 'Input image'
model.input_description['iouThreshold'] = f'(optional) IOU threshold override (default: {nms.iouThreshold})'
model.input_description['confidenceThreshold'] = \
f'(optional) Confidence threshold override (default: {nms.confidenceThreshold})'
model.output_description['confidence'] = 'Boxes × Class confidence (see user-defined metadata "classes")'
model.output_description['coordinates'] = 'Boxes × [x, y, width, height] (relative to image size)'
LOGGER.info(f'{prefix} pipeline success')
return model
def add_callback(self, event: str, callback):
"""
Appends the given callback.
"""
self.callbacks[event].append(callback)
def run_callbacks(self, event: str):
"""Execute all callbacks for a given event."""
for callback in self.callbacks.get(event, []):
callback(self)
class iOSDetectModel(torch.nn.Module):
"""Wrap an Ultralytics YOLO model for iOS export."""
def __init__(self, model, im):
"""Initialize the iOSDetectModel class with a YOLO model and example image."""
super().__init__()
b, c, h, w = im.shape # batch, channel, height, width
self.model = model
self.nc = len(model.names) # number of classes
if w == h:
self.normalize = 1.0 / w # scalar
else:
self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller)
def forward(self, x):
"""Normalize predictions of object detection model with input size-dependent factors."""
xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1)
return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
def export(cfg=DEFAULT_CFG):
"""Export a YOLOv model to a specific format."""
cfg.model = cfg.model or 'yolov8n.yaml'
cfg.format = cfg.format or 'torchscript'
from ultralytics import YOLO
model = YOLO(cfg.model)
model.export(**vars(cfg))
if __name__ == '__main__':
"""
CLI:
yolo mode=export model=yolov8n.yaml format=onnx
"""
export()

View File

@ -1,436 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import sys
from pathlib import Path
from typing import Union
from ultralytics import yolo # noqa
from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, PoseModel, SegmentationModel,
attempt_load_one_weight, guess_model_task, nn, yaml_model_load)
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, ROOT, callbacks,
is_git_dir, yaml_load)
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_pip_update_available, check_yaml
from ultralytics.yolo.utils.downloads import GITHUB_ASSET_STEMS
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
# Map head to model, trainer, validator, and predictor classes
TASK_MAP = {
'classify': [
ClassificationModel, yolo.v8.classify.ClassificationTrainer, yolo.v8.classify.ClassificationValidator,
yolo.v8.classify.ClassificationPredictor],
'detect': [
DetectionModel, yolo.v8.detect.DetectionTrainer, yolo.v8.detect.DetectionValidator,
yolo.v8.detect.DetectionPredictor],
'segment': [
SegmentationModel, yolo.v8.segment.SegmentationTrainer, yolo.v8.segment.SegmentationValidator,
yolo.v8.segment.SegmentationPredictor],
'pose': [PoseModel, yolo.v8.pose.PoseTrainer, yolo.v8.pose.PoseValidator, yolo.v8.pose.PosePredictor]}
class YOLO:
"""
YOLO (You Only Look Once) object detection model.
Args:
model (str, Path): Path to the model file to load or create.
task (Any, optional): Task type for the YOLO model. Defaults to None.
Attributes:
predictor (Any): The predictor object.
model (Any): The model object.
trainer (Any): The trainer object.
task (str): The type of model task.
ckpt (Any): The checkpoint object if the model loaded from *.pt file.
cfg (str): The model configuration if loaded from *.yaml file.
ckpt_path (str): The checkpoint file path.
overrides (dict): Overrides for the trainer object.
metrics (Any): The data for metrics.
Methods:
__call__(source=None, stream=False, **kwargs):
Alias for the predict method.
_new(cfg:str, verbose:bool=True) -> None:
Initializes a new model and infers the task type from the model definitions.
_load(weights:str, task:str='') -> None:
Initializes a new model and infers the task type from the model head.
_check_is_pytorch_model() -> None:
Raises TypeError if the model is not a PyTorch model.
reset() -> None:
Resets the model modules.
info(verbose:bool=False) -> None:
Logs the model info.
fuse() -> None:
Fuses the model for faster inference.
predict(source=None, stream=False, **kwargs) -> List[ultralytics.yolo.engine.results.Results]:
Performs prediction using the YOLO model.
Returns:
list(ultralytics.yolo.engine.results.Results): The prediction results.
"""
def __init__(self, model: Union[str, Path] = 'yolov8n.pt', task=None) -> None:
"""
Initializes the YOLO model.
Args:
model (Union[str, Path], optional): Path or name of the model to load or create. Defaults to 'yolov8n.pt'.
task (Any, optional): Task type for the YOLO model. Defaults to None.
"""
self.callbacks = callbacks.get_default_callbacks()
self.predictor = None # reuse predictor
self.model = None # model object
self.trainer = None # trainer object
self.task = None # task type
self.ckpt = None # if loaded from *.pt
self.cfg = None # if loaded from *.yaml
self.ckpt_path = None
self.overrides = {} # overrides for trainer object
self.metrics = None # validation/training metrics
self.session = None # HUB session
model = str(model).strip() # strip spaces
# Check if Ultralytics HUB model from https://hub.ultralytics.com
if self.is_hub_model(model):
from ultralytics.hub.session import HUBTrainingSession
self.session = HUBTrainingSession(model)
model = self.session.model_file
# Load or create new YOLO model
suffix = Path(model).suffix
if not suffix and Path(model).stem in GITHUB_ASSET_STEMS:
model, suffix = Path(model).with_suffix('.pt'), '.pt' # add suffix, i.e. yolov8n -> yolov8n.pt
if suffix == '.yaml':
self._new(model, task)
else:
self._load(model, task)
def __call__(self, source=None, stream=False, **kwargs):
"""Calls the 'predict' function with given arguments to perform object detection."""
return self.predict(source, stream, **kwargs)
def __getattr__(self, attr):
"""Raises error if object has no requested attribute."""
name = self.__class__.__name__
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
@staticmethod
def is_hub_model(model):
"""Check if the provided model is a HUB model."""
return any((
model.startswith('https://hub.ultralytics.com/models/'), # i.e. https://hub.ultralytics.com/models/MODEL_ID
[len(x) for x in model.split('_')] == [42, 20], # APIKEY_MODELID
len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\'))) # MODELID
def _new(self, cfg: str, task=None, verbose=True):
"""
Initializes a new model and infers the task type from the model definitions.
Args:
cfg (str): model configuration file
task (str | None): model task
verbose (bool): display model info on load
"""
cfg_dict = yaml_model_load(cfg)
self.cfg = cfg
self.task = task or guess_model_task(cfg_dict)
self.model = TASK_MAP[self.task][0](cfg_dict, verbose=verbose and RANK == -1) # build model
self.overrides['model'] = self.cfg
# Below added to allow export from yamls
args = {**DEFAULT_CFG_DICT, **self.overrides} # combine model and default args, preferring model args
self.model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model
self.model.task = self.task
def _load(self, weights: str, task=None):
"""
Initializes a new model and infers the task type from the model head.
Args:
weights (str): model checkpoint to be loaded
task (str | None): model task
"""
suffix = Path(weights).suffix
if suffix == '.pt':
self.model, self.ckpt = attempt_load_one_weight(weights)
self.task = self.model.args['task']
self.overrides = self.model.args = self._reset_ckpt_args(self.model.args)
self.ckpt_path = self.model.pt_path
else:
weights = check_file(weights)
self.model, self.ckpt = weights, None
self.task = task or guess_model_task(weights)
self.ckpt_path = weights
self.overrides['model'] = weights
self.overrides['task'] = self.task
def _check_is_pytorch_model(self):
"""
Raises TypeError is model is not a PyTorch model
"""
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt'
pt_module = isinstance(self.model, nn.Module)
if not (pt_module or pt_str):
raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. "
f'PyTorch models can be used to train, val, predict and export, i.e. '
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")
@smart_inference_mode()
def reset_weights(self):
"""
Resets the model modules parameters to randomly initialized values, losing all training information.
"""
self._check_is_pytorch_model()
for m in self.model.modules():
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
for p in self.model.parameters():
p.requires_grad = True
return self
@smart_inference_mode()
def load(self, weights='yolov8n.pt'):
"""
Transfers parameters with matching names and shapes from 'weights' to model.
"""
self._check_is_pytorch_model()
if isinstance(weights, (str, Path)):
weights, self.ckpt = attempt_load_one_weight(weights)
self.model.load(weights)
return self
def info(self, detailed=False, verbose=True):
"""
Logs model info.
Args:
detailed (bool): Show detailed information about model.
verbose (bool): Controls verbosity.
"""
self._check_is_pytorch_model()
return self.model.info(detailed=detailed, verbose=verbose)
def fuse(self):
"""Fuse PyTorch Conv2d and BatchNorm2d layers."""
self._check_is_pytorch_model()
self.model.fuse()
@smart_inference_mode()
def predict(self, source=None, stream=False, **kwargs):
"""
Perform prediction using the YOLO model.
Args:
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
Accepts all source types accepted by the YOLO model.
stream (bool): Whether to stream the predictions or not. Defaults to False.
**kwargs : Additional keyword arguments passed to the predictor.
Check the 'configuration' section in the documentation for all available options.
Returns:
(List[ultralytics.yolo.engine.results.Results]): The prediction results.
"""
if source is None:
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any(
x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track'))
overrides = self.overrides.copy()
overrides['conf'] = 0.25
overrides.update(kwargs) # prefer kwargs
overrides['mode'] = kwargs.get('mode', 'predict')
assert overrides['mode'] in ['track', 'predict']
if not is_cli:
overrides['save'] = kwargs.get('save', False) # do not save by default if called in Python
if not self.predictor:
self.task = overrides.get('task') or self.task
self.predictor = TASK_MAP[self.task][3](overrides=overrides, _callbacks=self.callbacks)
self.predictor.setup_model(model=self.model, verbose=is_cli)
else: # only update args if predictor is already setup
self.predictor.args = get_cfg(self.predictor.args, overrides)
if 'project' in overrides or 'name' in overrides:
self.predictor.save_dir = self.predictor.get_save_dir()
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
def track(self, source=None, stream=False, persist=False, **kwargs):
"""
Perform object tracking on the input source using the registered trackers.
Args:
source (str, optional): The input source for object tracking. Can be a file path or a video stream.
stream (bool, optional): Whether the input source is a video stream. Defaults to False.
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False.
**kwargs (optional): Additional keyword arguments for the tracking process.
Returns:
(List[ultralytics.yolo.engine.results.Results]): The tracking results.
"""
if not hasattr(self.predictor, 'trackers'):
from ultralytics.tracker import register_tracker
register_tracker(self, persist)
# ByteTrack-based method needs low confidence predictions as input
conf = kwargs.get('conf') or 0.1
kwargs['conf'] = conf
kwargs['mode'] = 'track'
return self.predict(source=source, stream=stream, **kwargs)
@smart_inference_mode()
def val(self, data=None, **kwargs):
"""
Validate a model on a given dataset.
Args:
data (str): The dataset to validate on. Accepts all formats accepted by yolo
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
"""
overrides = self.overrides.copy()
overrides['rect'] = True # rect batches as default
overrides.update(kwargs)
overrides['mode'] = 'val'
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.data = data or args.data
if 'task' in overrides:
self.task = args.task
else:
args.task = self.task
if args.imgsz == DEFAULT_CFG.imgsz and not isinstance(self.model, (str, Path)):
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
validator = TASK_MAP[self.task][2](args=args, _callbacks=self.callbacks)
validator(model=self.model)
self.metrics = validator.metrics
return validator.metrics
@smart_inference_mode()
def benchmark(self, **kwargs):
"""
Benchmark a model on all export formats.
Args:
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
"""
self._check_is_pytorch_model()
from ultralytics.yolo.utils.benchmarks import benchmark
overrides = self.model.args.copy()
overrides.update(kwargs)
overrides['mode'] = 'benchmark'
overrides = {**DEFAULT_CFG_DICT, **overrides} # fill in missing overrides keys with defaults
return benchmark(model=self, imgsz=overrides['imgsz'], half=overrides['half'], device=overrides['device'])
def export(self, **kwargs):
"""
Export model.
Args:
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
"""
self._check_is_pytorch_model()
overrides = self.overrides.copy()
overrides.update(kwargs)
overrides['mode'] = 'export'
if overrides.get('imgsz') is None:
overrides['imgsz'] = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
if 'batch' not in kwargs:
overrides['batch'] = 1 # default to 1 if not modified
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.task = self.task
return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)
def train(self, **kwargs):
"""
Trains the model on a given dataset.
Args:
**kwargs (Any): Any number of arguments representing the training configuration.
"""
self._check_is_pytorch_model()
if self.session: # Ultralytics HUB session
if any(kwargs):
LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.')
kwargs = self.session.train_args
check_pip_update_available()
overrides = self.overrides.copy()
if kwargs.get('cfg'):
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
overrides = yaml_load(check_yaml(kwargs['cfg']))
overrides.update(kwargs)
overrides['mode'] = 'train'
if not overrides.get('data'):
raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'")
if overrides.get('resume'):
overrides['resume'] = self.ckpt_path
self.task = overrides.get('task') or self.task
self.trainer = TASK_MAP[self.task][1](overrides=overrides, _callbacks=self.callbacks)
if not overrides.get('resume'): # manually set model only if not resuming
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
self.model = self.trainer.model
self.trainer.hub_session = self.session # attach optional HUB session
self.trainer.train()
# Update model and cfg after training
if RANK in (-1, 0):
self.model, _ = attempt_load_one_weight(str(self.trainer.best))
self.overrides = self.model.args
self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP
def to(self, device):
"""
Sends the model to the given device.
Args:
device (str): device
"""
self._check_is_pytorch_model()
self.model.to(device)
def tune(self, *args, **kwargs):
"""
Runs hyperparameter tuning using Ray Tune. See ultralytics.yolo.utils.tuner.run_ray_tune for Args.
Returns:
(dict): A dictionary containing the results of the hyperparameter search.
Raises:
ModuleNotFoundError: If Ray Tune is not installed.
"""
self._check_is_pytorch_model()
from ultralytics.yolo.utils.tuner import run_ray_tune
return run_ray_tune(self, *args, **kwargs)
@property
def names(self):
"""Returns class names of the loaded model."""
return self.model.names if hasattr(self.model, 'names') else None
@property
def device(self):
"""Returns device if PyTorch model."""
return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None
@property
def transforms(self):
"""Returns transform of the loaded model."""
return self.model.transforms if hasattr(self.model, 'transforms') else None
def add_callback(self, event: str, func):
"""Add a callback."""
self.callbacks[event].append(func)
def clear_callback(self, event: str):
"""Clear all event callbacks."""
self.callbacks[event] = []
@staticmethod
def _reset_ckpt_args(args):
"""Reset arguments when loading a PyTorch model."""
include = {'imgsz', 'data', 'task', 'single_cls'} # only remember these arguments when loading a PyTorch model
return {k: v for k, v in args.items() if k in include}
def _reset_callbacks(self):
"""Reset all registered callbacks."""
for event in callbacks.default_callbacks.keys():
self.callbacks[event] = [callbacks.default_callbacks[event][0]]

View File

@ -1,357 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ yolo mode=predict model=yolov8n.pt source=0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ yolo mode=predict model=yolov8n.pt # PyTorch
yolov8n.torchscript # TorchScript
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolov8n_openvino_model # OpenVINO
yolov8n.engine # TensorRT
yolov8n.mlmodel # CoreML (macOS-only)
yolov8n_saved_model # TensorFlow SavedModel
yolov8n.pb # TensorFlow GraphDef
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
"""
import platform
from pathlib import Path
import cv2
import numpy as np
import torch
from ultralytics.nn.autobackend import AutoBackend
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.data import load_inference_source
from ultralytics.yolo.data.augment import LetterBox, classify_transforms
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, MACOS, SETTINGS, WINDOWS, callbacks, colorstr, ops
from ultralytics.yolo.utils.checks import check_imgsz, check_imshow
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode
STREAM_WARNING = """
WARNING ⚠️ stream/video/webcam/dir predict source will accumulate results in RAM unless `stream=True` is passed,
causing potential out-of-memory errors for large sources or long-running streams/videos.
Usage:
results = model(source=..., stream=True) # generator of Results objects
for r in results:
boxes = r.boxes # Boxes object for bbox outputs
masks = r.masks # Masks object for segment masks outputs
probs = r.probs # Class probabilities for classification outputs
"""
class BasePredictor:
"""
BasePredictor
A base class for creating predictors.
Attributes:
args (SimpleNamespace): Configuration for the predictor.
save_dir (Path): Directory to save results.
done_warmup (bool): Whether the predictor has finished setup.
model (nn.Module): Model used for prediction.
data (dict): Data configuration.
device (torch.device): Device used for prediction.
dataset (Dataset): Dataset used for prediction.
vid_path (str): Path to video file.
vid_writer (cv2.VideoWriter): Video writer for saving video output.
data_path (str): Path to data.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initializes the BasePredictor class.
Args:
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
overrides (dict, optional): Configuration overrides. Defaults to None.
"""
self.args = get_cfg(cfg, overrides)
self.save_dir = self.get_save_dir()
if self.args.conf is None:
self.args.conf = 0.25 # default conf=0.25
self.done_warmup = False
if self.args.show:
self.args.show = check_imshow(warn=True)
# Usable if setup is done
self.model = None
self.data = self.args.data # data_dict
self.imgsz = None
self.device = None
self.dataset = None
self.vid_path, self.vid_writer = None, None
self.plotted_img = None
self.data_path = None
self.source_type = None
self.batch = None
self.results = None
self.transforms = None
self.callbacks = _callbacks or callbacks.get_default_callbacks()
callbacks.add_integration_callbacks(self)
def get_save_dir(self):
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task
name = self.args.name or f'{self.args.mode}'
return increment_path(Path(project) / name, exist_ok=self.args.exist_ok)
def preprocess(self, im):
"""Prepares input image before inference.
Args:
im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list.
"""
not_tensor = not isinstance(im, torch.Tensor)
if not_tensor:
im = np.stack(self.pre_transform(im))
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
im = np.ascontiguousarray(im) # contiguous
im = torch.from_numpy(im)
img = im.to(self.device)
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
if not_tensor:
img /= 255 # 0 - 255 to 0.0 - 1.0
return img
def inference(self, im, *args, **kwargs):
visualize = increment_path(self.save_dir / Path(self.batch[0][0]).stem,
mkdir=True) if self.args.visualize and (not self.source_type.tensor) else False
return self.model(im, augment=self.args.augment, visualize=visualize)
def pre_transform(self, im):
"""Pre-transform input image before inference.
Args:
im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list.
Return: A list of transformed imgs.
"""
same_shapes = all(x.shape == im[0].shape for x in im)
auto = same_shapes and self.model.pt
return [LetterBox(self.imgsz, auto=auto, stride=self.model.stride)(image=x) for x in im]
def write_results(self, idx, results, batch):
"""Write inference results to a file or directory."""
p, im, _ = batch
log_string = ''
if len(im.shape) == 3:
im = im[None] # expand for batch dim
if self.source_type.webcam or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
log_string += f'{idx}: '
frame = self.dataset.count
else:
frame = getattr(self.dataset, 'frame', 0)
self.data_path = p
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
log_string += '%gx%g ' % im.shape[2:] # print string
result = results[idx]
log_string += result.verbose()
if self.args.save or self.args.show: # Add bbox to image
plot_args = {
'line_width': self.args.line_width,
'boxes': self.args.boxes,
'conf': self.args.show_conf,
'labels': self.args.show_labels}
if not self.args.retina_masks:
plot_args['im_gpu'] = im[idx]
self.plotted_img = result.plot(**plot_args)
# Write
if self.args.save_txt:
result.save_txt(f'{self.txt_path}.txt', save_conf=self.args.save_conf)
if self.args.save_crop:
result.save_crop(save_dir=self.save_dir / 'crops', file_name=self.data_path.stem)
return log_string
def postprocess(self, preds, img, orig_imgs):
"""Post-processes predictions for an image and returns them."""
return preds
def __call__(self, source=None, model=None, stream=False, *args, **kwargs):
"""Performs inference on an image or stream."""
self.stream = stream
if stream:
return self.stream_inference(source, model, *args, **kwargs)
else:
return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one
def predict_cli(self, source=None, model=None):
"""Method used for CLI prediction. It uses always generator as outputs as not required by CLI mode."""
gen = self.stream_inference(source, model)
for _ in gen: # running CLI inference without accumulating any outputs (do not modify)
pass
def setup_source(self, source):
"""Sets up source and inference mode."""
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
self.transforms = getattr(self.model.model, 'transforms', classify_transforms(
self.imgsz[0])) if self.args.task == 'classify' else None
self.dataset = load_inference_source(source=source, imgsz=self.imgsz, vid_stride=self.args.vid_stride)
self.source_type = self.dataset.source_type
if not getattr(self, 'stream', True) and (self.dataset.mode == 'stream' or # streams
len(self.dataset) > 1000 or # images
any(getattr(self.dataset, 'video_flag', [False]))): # videos
LOGGER.warning(STREAM_WARNING)
self.vid_path, self.vid_writer = [None] * self.dataset.bs, [None] * self.dataset.bs
@smart_inference_mode()
def stream_inference(self, source=None, model=None, *args, **kwargs):
"""Streams real-time inference on camera feed and saves results to file."""
if self.args.verbose:
LOGGER.info('')
# Setup model
if not self.model:
self.setup_model(model)
# Setup source every time predict is called
self.setup_source(source if source is not None else self.args.source)
# Check if save_dir/ label file exists
if self.args.save or self.args.save_txt:
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
# Warmup model
if not self.done_warmup:
self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz))
self.done_warmup = True
self.seen, self.windows, self.batch, profilers = 0, [], None, (ops.Profile(), ops.Profile(), ops.Profile())
self.run_callbacks('on_predict_start')
for batch in self.dataset:
self.run_callbacks('on_predict_batch_start')
self.batch = batch
path, im0s, vid_cap, s = batch
# Preprocess
with profilers[0]:
im = self.preprocess(im0s)
# Inference
with profilers[1]:
preds = self.inference(im, *args, **kwargs)
# Postprocess
with profilers[2]:
self.results = self.postprocess(preds, im, im0s)
self.run_callbacks('on_predict_postprocess_end')
# Visualize, save, write results
n = len(im0s)
for i in range(n):
self.seen += 1
self.results[i].speed = {
'preprocess': profilers[0].dt * 1E3 / n,
'inference': profilers[1].dt * 1E3 / n,
'postprocess': profilers[2].dt * 1E3 / n}
p, im0 = path[i], None if self.source_type.tensor else im0s[i].copy()
p = Path(p)
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
s += self.write_results(i, self.results, (p, im, im0))
if self.args.save or self.args.save_txt:
self.results[i].save_dir = self.save_dir.__str__()
if self.args.show and self.plotted_img is not None:
self.show(p)
if self.args.save and self.plotted_img is not None:
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
self.run_callbacks('on_predict_batch_end')
yield from self.results
# Print time (inference-only)
if self.args.verbose:
LOGGER.info(f'{s}{profilers[1].dt * 1E3:.1f}ms')
# Release assets
if isinstance(self.vid_writer[-1], cv2.VideoWriter):
self.vid_writer[-1].release() # release final video writer
# Print results
if self.args.verbose and self.seen:
t = tuple(x.t / self.seen * 1E3 for x in profilers) # speeds per image
LOGGER.info(f'Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape '
f'{(1, 3, *im.shape[2:])}' % t)
if self.args.save or self.args.save_txt or self.args.save_crop:
nl = len(list(self.save_dir.glob('labels/*.txt'))) # number of labels
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
self.run_callbacks('on_predict_end')
def setup_model(self, model, verbose=True):
"""Initialize YOLO model with given parameters and set it to evaluation mode."""
self.model = AutoBackend(model or self.args.model,
device=select_device(self.args.device, verbose=verbose),
dnn=self.args.dnn,
data=self.args.data,
fp16=self.args.half,
fuse=True,
verbose=verbose)
self.device = self.model.device # update device
self.args.half = self.model.fp16 # update half
self.model.eval()
def show(self, p):
"""Display an image in a window using OpenCV imshow()."""
im0 = self.plotted_img
if platform.system() == 'Linux' and p not in self.windows:
self.windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(500 if self.batch[3].startswith('image') else 1) # 1 millisecond
def save_preds(self, vid_cap, idx, save_path):
"""Save video predictions as mp4 at specified path."""
im0 = self.plotted_img
# Save imgs
if self.dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if self.vid_path[idx] != save_path: # new video
self.vid_path[idx] = save_path
if isinstance(self.vid_writer[idx], cv2.VideoWriter):
self.vid_writer[idx].release() # release previous video writer
if vid_cap: # video
fps = int(vid_cap.get(cv2.CAP_PROP_FPS)) # integer required, floats produce error in MP4 codec
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
suffix = '.mp4' if MACOS else '.avi' if WINDOWS else '.avi'
fourcc = 'avc1' if MACOS else 'WMV2' if WINDOWS else 'MJPG'
save_path = str(Path(save_path).with_suffix(suffix))
self.vid_writer[idx] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
self.vid_writer[idx].write(im0)
def run_callbacks(self, event: str):
"""Runs all registered callbacks for a specific event."""
for callback in self.callbacks.get(event, []):
callback(self)
def add_callback(self, event: str, func):
"""
Add callback
"""
self.callbacks[event].append(func)

View File

@ -1,614 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Ultralytics Results, Boxes and Masks classes for handling inference results
Usage: See https://docs.ultralytics.com/modes/predict/
"""
from copy import deepcopy
from functools import lru_cache
from pathlib import Path
import numpy as np
import torch
from ultralytics.yolo.data.augment import LetterBox
from ultralytics.yolo.utils import LOGGER, SimpleClass, deprecation_warn, ops
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
class BaseTensor(SimpleClass):
"""
Base tensor class with additional methods for easy manipulation and device handling.
"""
def __init__(self, data, orig_shape) -> None:
"""Initialize BaseTensor with data and original shape.
Args:
data (torch.Tensor | np.ndarray): Predictions, such as bboxes, masks and keypoints.
orig_shape (tuple): Original shape of image.
"""
assert isinstance(data, (torch.Tensor, np.ndarray))
self.data = data
self.orig_shape = orig_shape
@property
def shape(self):
"""Return the shape of the data tensor."""
return self.data.shape
def cpu(self):
"""Return a copy of the tensor on CPU memory."""
return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape)
def numpy(self):
"""Return a copy of the tensor as a numpy array."""
return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape)
def cuda(self):
"""Return a copy of the tensor on GPU memory."""
return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape)
def to(self, *args, **kwargs):
"""Return a copy of the tensor with the specified device and dtype."""
return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape)
def __len__(self): # override len(results)
"""Return the length of the data tensor."""
return len(self.data)
def __getitem__(self, idx):
"""Return a BaseTensor with the specified index of the data tensor."""
return self.__class__(self.data[idx], self.orig_shape)
class Results(SimpleClass):
"""
A class for storing and manipulating inference results.
Args:
orig_img (numpy.ndarray): The original image as a numpy array.
path (str): The path to the image file.
names (dict): A dictionary of class names.
boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection.
masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image.
probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
Attributes:
orig_img (numpy.ndarray): The original image as a numpy array.
orig_shape (tuple): The original image shape in (height, width) format.
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
masks (Masks, optional): A Masks object containing the detection masks.
probs (Probs, optional): A Probs object containing probabilities of each class for classification task.
names (dict): A dictionary of class names.
path (str): The path to the image file.
keypoints (Keypoints, optional): A Keypoints object containing detected keypoints for each object.
speed (dict): A dictionary of preprocess, inference and postprocess speeds in milliseconds per image.
_keys (tuple): A tuple of attribute names for non-empty attributes.
"""
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None) -> None:
"""Initialize the Results class."""
self.orig_img = orig_img
self.orig_shape = orig_img.shape[:2]
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks
self.probs = Probs(probs) if probs is not None else None
self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None
self.speed = {'preprocess': None, 'inference': None, 'postprocess': None} # milliseconds per image
self.names = names
self.path = path
self.save_dir = None
self._keys = ('boxes', 'masks', 'probs', 'keypoints')
def __getitem__(self, idx):
"""Return a Results object for the specified index."""
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k)[idx])
return r
def update(self, boxes=None, masks=None, probs=None):
"""Update the boxes, masks, and probs attributes of the Results object."""
if boxes is not None:
self.boxes = Boxes(boxes, self.orig_shape)
if masks is not None:
self.masks = Masks(masks, self.orig_shape)
if probs is not None:
self.probs = probs
def cpu(self):
"""Return a copy of the Results object with all tensors on CPU memory."""
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k).cpu())
return r
def numpy(self):
"""Return a copy of the Results object with all tensors as numpy arrays."""
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k).numpy())
return r
def cuda(self):
"""Return a copy of the Results object with all tensors on GPU memory."""
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k).cuda())
return r
def to(self, *args, **kwargs):
"""Return a copy of the Results object with tensors on the specified device and dtype."""
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k).to(*args, **kwargs))
return r
def __len__(self):
"""Return the number of detections in the Results object."""
for k in self.keys:
return len(getattr(self, k))
def new(self):
"""Return a new Results object with the same image, path, and names."""
return Results(orig_img=self.orig_img, path=self.path, names=self.names)
@property
def keys(self):
"""Return a list of non-empty attribute names."""
return [k for k in self._keys if getattr(self, k) is not None]
def plot(
self,
conf=True,
line_width=None,
font_size=None,
font='Arial.ttf',
pil=False,
img=None,
im_gpu=None,
kpt_line=True,
labels=True,
boxes=True,
masks=True,
probs=True,
**kwargs # deprecated args TODO: remove support in 8.2
):
"""
Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image.
Args:
conf (bool): Whether to plot the detection confidence score.
line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size.
font_size (float, optional): The font size of the text. If None, it is scaled to the image size.
font (str): The font to use for the text.
pil (bool): Whether to return the image as a PIL Image.
img (numpy.ndarray): Plot to another image. if not, plot to original image.
im_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting.
kpt_line (bool): Whether to draw lines connecting keypoints.
labels (bool): Whether to plot the label of bounding boxes.
boxes (bool): Whether to plot the bounding boxes.
masks (bool): Whether to plot the masks.
probs (bool): Whether to plot classification probability
Returns:
(numpy.ndarray): A numpy array of the annotated image.
"""
if img is None and isinstance(self.orig_img, torch.Tensor):
img = np.ascontiguousarray(self.orig_img[0].permute(1, 2, 0).cpu().detach().numpy()) * 255
# Deprecation warn TODO: remove in 8.2
if 'show_conf' in kwargs:
deprecation_warn('show_conf', 'conf')
conf = kwargs['show_conf']
assert type(conf) == bool, '`show_conf` should be of boolean type, i.e, show_conf=True/False'
if 'line_thickness' in kwargs:
deprecation_warn('line_thickness', 'line_width')
line_width = kwargs['line_thickness']
assert type(line_width) == int, '`line_width` should be of int type, i.e, line_width=3'
names = self.names
pred_boxes, show_boxes = self.boxes, boxes
pred_masks, show_masks = self.masks, masks
pred_probs, show_probs = self.probs, probs
annotator = Annotator(
deepcopy(self.orig_img if img is None else img),
line_width,
font_size,
font,
pil or (pred_probs is not None and show_probs), # Classify tasks default to pil=True
example=names)
# Plot Segment results
if pred_masks and show_masks:
if im_gpu is None:
img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
im_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device).permute(
2, 0, 1).flip(0).contiguous() / 255
idx = pred_boxes.cls if pred_boxes else range(len(pred_masks))
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)
# Plot Detect results
if pred_boxes and show_boxes:
for d in reversed(pred_boxes):
c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
name = ('' if id is None else f'id:{id} ') + names[c]
label = (f'{name} {conf:.2f}' if conf else name) if labels else None
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True))
# Plot Classify results
if pred_probs is not None and show_probs:
text = ',\n'.join(f'{names[j] if names else j} {pred_probs.data[j]:.2f}' for j in pred_probs.top5)
x = round(self.orig_shape[0] * 0.03)
annotator.text([x, x], text, txt_color=(255, 255, 255)) # TODO: allow setting colors
# Plot Pose results
if self.keypoints is not None:
for k in reversed(self.keypoints.data):
annotator.kpts(k, self.orig_shape, kpt_line=kpt_line)
return annotator.result()
def verbose(self):
"""
Return log string for each task.
"""
log_string = ''
probs = self.probs
boxes = self.boxes
if len(self) == 0:
return log_string if probs is not None else f'{log_string}(no detections), '
if probs is not None:
log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
if boxes:
for c in boxes.cls.unique():
n = (boxes.cls == c).sum() # detections per class
log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
return log_string
def save_txt(self, txt_file, save_conf=False):
"""
Save predictions into txt file.
Args:
txt_file (str): txt file path.
save_conf (bool): save confidence score or not.
"""
boxes = self.boxes
masks = self.masks
probs = self.probs
kpts = self.keypoints
texts = []
if probs is not None:
# Classify
[texts.append(f'{probs.data[j]:.2f} {self.names[j]}') for j in probs.top5]
elif boxes:
# Detect/segment/pose
for j, d in enumerate(boxes):
c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item())
line = (c, *d.xywhn.view(-1))
if masks:
seg = masks[j].xyn[0].copy().reshape(-1) # reversed mask.xyn, (n,2) to (n*2)
line = (c, *seg)
if kpts is not None:
kpt = torch.cat((kpts[j].xyn, kpts[j].conf[..., None]), 2) if kpts[j].has_visible else kpts[j].xyn
line += (*kpt.reshape(-1).tolist(), )
line += (conf, ) * save_conf + (() if id is None else (id, ))
texts.append(('%g ' * len(line)).rstrip() % line)
if texts:
with open(txt_file, 'a') as f:
f.writelines(text + '\n' for text in texts)
def save_crop(self, save_dir, file_name=Path('im.jpg')):
"""
Save cropped predictions to `save_dir/cls/file_name.jpg`.
Args:
save_dir (str | pathlib.Path): Save path.
file_name (str | pathlib.Path): File name.
"""
if self.probs is not None:
LOGGER.warning('WARNING ⚠️ Classify task do not support `save_crop`.')
return
if isinstance(save_dir, str):
save_dir = Path(save_dir)
if isinstance(file_name, str):
file_name = Path(file_name)
for d in self.boxes:
save_one_box(d.xyxy,
self.orig_img.copy(),
file=save_dir / self.names[int(d.cls)] / f'{file_name.stem}.jpg',
BGR=True)
def pandas(self):
"""Convert the object to a pandas DataFrame (not yet implemented)."""
LOGGER.warning("WARNING ⚠️ 'Results.pandas' method is not yet implemented.")
def tojson(self, normalize=False):
"""Convert the object to JSON format."""
if self.probs is not None:
LOGGER.warning('Warning: Classify task do not support `tojson` yet.')
return
import json
# Create list of detection dictionaries
results = []
data = self.boxes.data.cpu().tolist()
h, w = self.orig_shape if normalize else (1, 1)
for i, row in enumerate(data):
box = {'x1': row[0] / w, 'y1': row[1] / h, 'x2': row[2] / w, 'y2': row[3] / h}
conf = row[4]
id = int(row[5])
name = self.names[id]
result = {'name': name, 'class': id, 'confidence': conf, 'box': box}
if self.masks:
x, y = self.masks.xy[i][:, 0], self.masks.xy[i][:, 1] # numpy array
result['segments'] = {'x': (x / w).tolist(), 'y': (y / h).tolist()}
if self.keypoints is not None:
x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1) # torch Tensor
result['keypoints'] = {'x': (x / w).tolist(), 'y': (y / h).tolist(), 'visible': visible.tolist()}
results.append(result)
# Convert detections to JSON
return json.dumps(results, indent=2)
class Boxes(BaseTensor):
"""
A class for storing and manipulating detection boxes.
Args:
boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
with shape (num_boxes, 6). The last two columns should contain confidence and class values.
orig_shape (tuple): Original image size, in the format (height, width).
Attributes:
boxes (torch.Tensor | numpy.ndarray): The detection boxes with shape (num_boxes, 6).
orig_shape (torch.Tensor | numpy.ndarray): Original image size, in the format (height, width).
is_track (bool): True if the boxes also include track IDs, False otherwise.
Properties:
xyxy (torch.Tensor | numpy.ndarray): The boxes in xyxy format.
conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes.
cls (torch.Tensor | numpy.ndarray): The class values of the boxes.
id (torch.Tensor | numpy.ndarray): The track IDs of the boxes (if available).
xywh (torch.Tensor | numpy.ndarray): The boxes in xywh format.
xyxyn (torch.Tensor | numpy.ndarray): The boxes in xyxy format normalized by original image size.
xywhn (torch.Tensor | numpy.ndarray): The boxes in xywh format normalized by original image size.
data (torch.Tensor): The raw bboxes tensor
Methods:
cpu(): Move the object to CPU memory.
numpy(): Convert the object to a numpy array.
cuda(): Move the object to CUDA memory.
to(*args, **kwargs): Move the object to the specified device.
pandas(): Convert the object to a pandas DataFrame (not yet implemented).
"""
def __init__(self, boxes, orig_shape) -> None:
"""Initialize the Boxes class."""
if boxes.ndim == 1:
boxes = boxes[None, :]
n = boxes.shape[-1]
assert n in (6, 7), f'expected `n` in [6, 7], but got {n}' # xyxy, (track_id), conf, cls
super().__init__(boxes, orig_shape)
self.is_track = n == 7
self.orig_shape = orig_shape
@property
def xyxy(self):
"""Return the boxes in xyxy format."""
return self.data[:, :4]
@property
def conf(self):
"""Return the confidence values of the boxes."""
return self.data[:, -2]
@property
def cls(self):
"""Return the class values of the boxes."""
return self.data[:, -1]
@property
def id(self):
"""Return the track IDs of the boxes (if available)."""
return self.data[:, -3] if self.is_track else None
@property
@lru_cache(maxsize=2) # maxsize 1 should suffice
def xywh(self):
"""Return the boxes in xywh format."""
return ops.xyxy2xywh(self.xyxy)
@property
@lru_cache(maxsize=2)
def xyxyn(self):
"""Return the boxes in xyxy format normalized by original image size."""
xyxy = self.xyxy.clone() if isinstance(self.xyxy, torch.Tensor) else np.copy(self.xyxy)
xyxy[..., [0, 2]] /= self.orig_shape[1]
xyxy[..., [1, 3]] /= self.orig_shape[0]
return xyxy
@property
@lru_cache(maxsize=2)
def xywhn(self):
"""Return the boxes in xywh format normalized by original image size."""
xywh = ops.xyxy2xywh(self.xyxy)
xywh[..., [0, 2]] /= self.orig_shape[1]
xywh[..., [1, 3]] /= self.orig_shape[0]
return xywh
@property
def boxes(self):
"""Return the raw bboxes tensor (deprecated)."""
LOGGER.warning("WARNING ⚠️ 'Boxes.boxes' is deprecated. Use 'Boxes.data' instead.")
return self.data
class Masks(BaseTensor):
"""
A class for storing and manipulating detection masks.
Args:
masks (torch.Tensor | np.ndarray): A tensor containing the detection masks, with shape (num_masks, height, width).
orig_shape (tuple): Original image size, in the format (height, width).
Attributes:
masks (torch.Tensor | np.ndarray): A tensor containing the detection masks, with shape (num_masks, height, width).
orig_shape (tuple): Original image size, in the format (height, width).
Properties:
xy (list): A list of segments (pixels) which includes x, y segments of each detection.
xyn (list): A list of segments (normalized) which includes x, y segments of each detection.
Methods:
cpu(): Returns a copy of the masks tensor on CPU memory.
numpy(): Returns a copy of the masks tensor as a numpy array.
cuda(): Returns a copy of the masks tensor on GPU memory.
to(): Returns a copy of the masks tensor with the specified device and dtype.
"""
def __init__(self, masks, orig_shape) -> None:
"""Initialize the Masks class."""
if masks.ndim == 2:
masks = masks[None, :]
super().__init__(masks, orig_shape)
@property
@lru_cache(maxsize=1)
def segments(self):
"""Return segments (deprecated; normalized)."""
LOGGER.warning("WARNING ⚠️ 'Masks.segments' is deprecated. Use 'Masks.xyn' for segments (normalized) and "
"'Masks.xy' for segments (pixels) instead.")
return self.xyn
@property
@lru_cache(maxsize=1)
def xyn(self):
"""Return segments (normalized)."""
return [
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True)
for x in ops.masks2segments(self.data)]
@property
@lru_cache(maxsize=1)
def xy(self):
"""Return segments (pixels)."""
return [
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False)
for x in ops.masks2segments(self.data)]
@property
def masks(self):
"""Return the raw masks tensor (deprecated)."""
LOGGER.warning("WARNING ⚠️ 'Masks.masks' is deprecated. Use 'Masks.data' instead.")
return self.data
def pandas(self):
"""Convert the object to a pandas DataFrame (not yet implemented)."""
LOGGER.warning("WARNING ⚠️ 'Masks.pandas' method is not yet implemented.")
class Keypoints(BaseTensor):
"""
A class for storing and manipulating detection keypoints.
Args:
keypoints (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_dets, num_kpts, 2/3).
orig_shape (tuple): Original image size, in the format (height, width).
Attributes:
keypoints (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_dets, num_kpts, 2/3).
orig_shape (tuple): Original image size, in the format (height, width).
Properties:
xy (list): A list of keypoints (pixels) which includes x, y keypoints of each detection.
xyn (list): A list of keypoints (normalized) which includes x, y keypoints of each detection.
Methods:
cpu(): Returns a copy of the keypoints tensor on CPU memory.
numpy(): Returns a copy of the keypoints tensor as a numpy array.
cuda(): Returns a copy of the keypoints tensor on GPU memory.
to(): Returns a copy of the keypoints tensor with the specified device and dtype.
"""
def __init__(self, keypoints, orig_shape) -> None:
if keypoints.ndim == 2:
keypoints = keypoints[None, :]
super().__init__(keypoints, orig_shape)
self.has_visible = self.data.shape[-1] == 3
@property
@lru_cache(maxsize=1)
def xy(self):
return self.data[..., :2]
@property
@lru_cache(maxsize=1)
def xyn(self):
xy = self.xy.clone() if isinstance(self.xy, torch.Tensor) else np.copy(self.xy)
xy[..., 0] /= self.orig_shape[1]
xy[..., 1] /= self.orig_shape[0]
return xy
@property
@lru_cache(maxsize=1)
def conf(self):
return self.data[..., 2] if self.has_visible else None
class Probs(BaseTensor):
"""
A class for storing and manipulating classify predictions.
Args:
probs (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_class, ).
Attributes:
probs (torch.Tensor | np.ndarray): A tensor containing the detection keypoints, with shape (num_class).
Properties:
top5 (list[int]): Top 1 indice.
top1 (int): Top 5 indices.
Methods:
cpu(): Returns a copy of the probs tensor on CPU memory.
numpy(): Returns a copy of the probs tensor as a numpy array.
cuda(): Returns a copy of the probs tensor on GPU memory.
to(): Returns a copy of the probs tensor with the specified device and dtype.
"""
def __init__(self, probs, orig_shape=None) -> None:
super().__init__(probs, orig_shape)
@property
@lru_cache(maxsize=1)
def top5(self):
"""Return the indices of top 5."""
return (-self.data).argsort(0)[:5].tolist() # this way works with both torch and numpy.
@property
@lru_cache(maxsize=1)
def top1(self):
"""Return the indices of top 1."""
return int(self.data.argmax())
@property
@lru_cache(maxsize=1)
def top5conf(self):
"""Return the confidences of top 5."""
return self.data[self.top5]
@property
@lru_cache(maxsize=1)
def top1conf(self):
"""Return the confidences of top 1."""
return self.data[self.top1]

View File

@ -1,664 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Train a model on a dataset
Usage:
$ yolo mode=train model=yolov8n.pt data=coco128.yaml imgsz=640 epochs=100 batch=16
"""
import math
import os
import subprocess
import time
from copy import deepcopy
from datetime import datetime, timedelta
from pathlib import Path
import numpy as np
import torch
from torch import distributed as dist
from torch import nn, optim
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm
from ultralytics.nn.tasks import attempt_load_one_weight, attempt_load_weights
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.data.utils import check_cls_dataset, check_det_dataset
from ultralytics.yolo.utils import (DEFAULT_CFG, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, __version__, callbacks,
clean_url, colorstr, emojis, yaml_save)
from ultralytics.yolo.utils.autobatch import check_train_batch_size
from ultralytics.yolo.utils.checks import check_amp, check_file, check_imgsz, print_args
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command
from ultralytics.yolo.utils.files import get_latest_run, increment_path
from ultralytics.yolo.utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, init_seeds, one_cycle,
select_device, strip_optimizer)
class BaseTrainer:
"""
BaseTrainer
A base class for creating trainers.
Attributes:
args (SimpleNamespace): Configuration for the trainer.
check_resume (method): Method to check if training should be resumed from a saved checkpoint.
validator (BaseValidator): Validator instance.
model (nn.Module): Model instance.
callbacks (defaultdict): Dictionary of callbacks.
save_dir (Path): Directory to save results.
wdir (Path): Directory to save weights.
last (Path): Path to last checkpoint.
best (Path): Path to best checkpoint.
save_period (int): Save checkpoint every x epochs (disabled if < 1).
batch_size (int): Batch size for training.
epochs (int): Number of epochs to train for.
start_epoch (int): Starting epoch for training.
device (torch.device): Device to use for training.
amp (bool): Flag to enable AMP (Automatic Mixed Precision).
scaler (amp.GradScaler): Gradient scaler for AMP.
data (str): Path to data.
trainset (torch.utils.data.Dataset): Training dataset.
testset (torch.utils.data.Dataset): Testing dataset.
ema (nn.Module): EMA (Exponential Moving Average) of the model.
lf (nn.Module): Loss function.
scheduler (torch.optim.lr_scheduler._LRScheduler): Learning rate scheduler.
best_fitness (float): The best fitness value achieved.
fitness (float): Current fitness value.
loss (float): Current loss value.
tloss (float): Total loss value.
loss_names (list): List of loss names.
csv (Path): Path to results CSV file.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initializes the BaseTrainer class.
Args:
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
overrides (dict, optional): Configuration overrides. Defaults to None.
"""
self.args = get_cfg(cfg, overrides)
self.device = select_device(self.args.device, self.args.batch)
self.check_resume()
self.validator = None
self.model = None
self.metrics = None
self.plots = {}
init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic)
# Dirs
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task
name = self.args.name or f'{self.args.mode}'
if hasattr(self.args, 'save_dir'):
self.save_dir = Path(self.args.save_dir)
else:
self.save_dir = Path(
increment_path(Path(project) / name, exist_ok=self.args.exist_ok if RANK in (-1, 0) else True))
self.wdir = self.save_dir / 'weights' # weights dir
if RANK in (-1, 0):
self.wdir.mkdir(parents=True, exist_ok=True) # make dir
self.args.save_dir = str(self.save_dir)
yaml_save(self.save_dir / 'args.yaml', vars(self.args)) # save run args
self.last, self.best = self.wdir / 'last.pt', self.wdir / 'best.pt' # checkpoint paths
self.save_period = self.args.save_period
self.batch_size = self.args.batch
self.epochs = self.args.epochs
self.start_epoch = 0
if RANK == -1:
print_args(vars(self.args))
# Device
if self.device.type == 'cpu':
self.args.workers = 0 # faster CPU training as time dominated by inference, not dataloading
# Model and Dataset
self.model = self.args.model
try:
if self.args.task == 'classify':
self.data = check_cls_dataset(self.args.data)
elif self.args.data.endswith('.yaml') or self.args.task in ('detect', 'segment'):
self.data = check_det_dataset(self.args.data)
if 'yaml_file' in self.data:
self.args.data = self.data['yaml_file'] # for validating 'yolo train data=url.zip' usage
except Exception as e:
raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e
self.trainset, self.testset = self.get_dataset(self.data)
self.ema = None
# Optimization utils init
self.lf = None
self.scheduler = None
# Epoch level metrics
self.best_fitness = None
self.fitness = None
self.loss = None
self.tloss = None
self.loss_names = ['Loss']
self.csv = self.save_dir / 'results.csv'
self.plot_idx = [0, 1, 2]
# Callbacks
self.callbacks = _callbacks or callbacks.get_default_callbacks()
if RANK in (-1, 0):
callbacks.add_integration_callbacks(self)
def add_callback(self, event: str, callback):
"""
Appends the given callback.
"""
self.callbacks[event].append(callback)
def set_callback(self, event: str, callback):
"""
Overrides the existing callbacks with the given callback.
"""
self.callbacks[event] = [callback]
def run_callbacks(self, event: str):
"""Run all existing callbacks associated with a particular event."""
for callback in self.callbacks.get(event, []):
callback(self)
def train(self):
"""Allow device='', device=None on Multi-GPU systems to default to device=0."""
if isinstance(self.args.device, int) or self.args.device: # i.e. device=0 or device=[0,1,2,3]
world_size = torch.cuda.device_count()
elif torch.cuda.is_available(): # i.e. device=None or device=''
world_size = 1 # default to device 0
else: # i.e. device='cpu' or 'mps'
world_size = 0
# Run subprocess if DDP training, else train normally
if world_size > 1 and 'LOCAL_RANK' not in os.environ:
# Argument checks
if self.args.rect:
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with Multi-GPU training, setting rect=False")
self.args.rect = False
# Command
cmd, file = generate_ddp_command(world_size, self)
try:
LOGGER.info(f'DDP command: {cmd}')
subprocess.run(cmd, check=True)
except Exception as e:
raise e
finally:
ddp_cleanup(self, str(file))
else:
self._do_train(world_size)
def _setup_ddp(self, world_size):
"""Initializes and sets the DistributedDataParallel parameters for training."""
torch.cuda.set_device(RANK)
self.device = torch.device('cuda', RANK)
LOGGER.info(f'DDP info: RANK {RANK}, WORLD_SIZE {world_size}, DEVICE {self.device}')
os.environ['NCCL_BLOCKING_WAIT'] = '1' # set to enforce timeout
dist.init_process_group(
'nccl' if dist.is_nccl_available() else 'gloo',
timeout=timedelta(seconds=10800), # 3 hours
rank=RANK,
world_size=world_size)
def _setup_train(self, world_size):
"""
Builds dataloaders and optimizer on correct rank process.
"""
# Model
self.run_callbacks('on_pretrain_routine_start')
ckpt = self.setup_model()
self.model = self.model.to(self.device)
self.set_model_attributes()
# Check AMP
self.amp = torch.tensor(self.args.amp).to(self.device) # True or False
if self.amp and RANK in (-1, 0): # Single-GPU and DDP
callbacks_backup = callbacks.default_callbacks.copy() # backup callbacks as check_amp() resets them
self.amp = torch.tensor(check_amp(self.model), device=self.device)
callbacks.default_callbacks = callbacks_backup # restore callbacks
if RANK > -1 and world_size > 1: # DDP
dist.broadcast(self.amp, src=0) # broadcast the tensor from rank 0 to all other ranks (returns None)
self.amp = bool(self.amp) # as boolean
self.scaler = amp.GradScaler(enabled=self.amp)
if world_size > 1:
self.model = DDP(self.model, device_ids=[RANK])
# Check imgsz
gs = max(int(self.model.stride.max() if hasattr(self.model, 'stride') else 32), 32) # grid size (max stride)
self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1)
# Batch size
if self.batch_size == -1:
if RANK == -1: # single-GPU only, estimate best batch size
self.args.batch = self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp)
else:
SyntaxError('batch=-1 to use AutoBatch is only available in Single-GPU training. '
'Please pass a valid batch size value for Multi-GPU DDP training, i.e. batch=16')
# Dataloaders
batch_size = self.batch_size // max(world_size, 1)
self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train')
if RANK in (-1, 0):
self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode='val')
self.validator = self.get_validator()
metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix='val')
self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) # TODO: init metrics for plot_results()?
self.ema = ModelEMA(self.model)
if self.args.plots:
self.plot_training_labels()
# Optimizer
self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing
weight_decay = self.args.weight_decay * self.batch_size * self.accumulate / self.args.nbs # scale weight_decay
iterations = math.ceil(len(self.train_loader.dataset) / max(self.batch_size, self.args.nbs)) * self.epochs
self.optimizer = self.build_optimizer(model=self.model,
name=self.args.optimizer,
lr=self.args.lr0,
momentum=self.args.momentum,
decay=weight_decay,
iterations=iterations)
# Scheduler
if self.args.cos_lr:
self.lf = one_cycle(1, self.args.lrf, self.epochs) # cosine 1->hyp['lrf']
else:
self.lf = lambda x: (1 - x / self.epochs) * (1.0 - self.args.lrf) + self.args.lrf # linear
self.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf)
self.stopper, self.stop = EarlyStopping(patience=self.args.patience), False
self.resume_training(ckpt)
self.scheduler.last_epoch = self.start_epoch - 1 # do not move
self.run_callbacks('on_pretrain_routine_end')
def _do_train(self, world_size=1):
"""Train completed, evaluate and plot if specified by arguments."""
if world_size > 1:
self._setup_ddp(world_size)
self._setup_train(world_size)
self.epoch_time = None
self.epoch_time_start = time.time()
self.train_time_start = time.time()
nb = len(self.train_loader) # number of batches
nw = max(round(self.args.warmup_epochs *
nb), 100) if self.args.warmup_epochs > 0 else -1 # number of warmup iterations
last_opt_step = -1
self.run_callbacks('on_train_start')
LOGGER.info(f'Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n'
f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n'
f"Logging results to {colorstr('bold', self.save_dir)}\n"
f'Starting training for {self.epochs} epochs...')
if self.args.close_mosaic:
base_idx = (self.epochs - self.args.close_mosaic) * nb
self.plot_idx.extend([base_idx, base_idx + 1, base_idx + 2])
epoch = self.epochs # predefine for resume fully trained model edge cases
for epoch in range(self.start_epoch, self.epochs):
self.epoch = epoch
self.run_callbacks('on_train_epoch_start')
self.model.train()
if RANK != -1:
self.train_loader.sampler.set_epoch(epoch)
pbar = enumerate(self.train_loader)
# Update dataloader attributes (optional)
if epoch == (self.epochs - self.args.close_mosaic):
LOGGER.info('Closing dataloader mosaic')
if hasattr(self.train_loader.dataset, 'mosaic'):
self.train_loader.dataset.mosaic = False
if hasattr(self.train_loader.dataset, 'close_mosaic'):
self.train_loader.dataset.close_mosaic(hyp=self.args)
self.train_loader.reset()
if RANK in (-1, 0):
LOGGER.info(self.progress_string())
pbar = tqdm(enumerate(self.train_loader), total=nb, bar_format=TQDM_BAR_FORMAT)
self.tloss = None
self.optimizer.zero_grad()
for i, batch in pbar:
self.run_callbacks('on_train_batch_start')
# Warmup
ni = i + nb * epoch
if ni <= nw:
xi = [0, nw] # x interp
self.accumulate = max(1, np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round())
for j, x in enumerate(self.optimizer.param_groups):
# Bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(
ni, xi, [self.args.warmup_bias_lr if j == 0 else 0.0, x['initial_lr'] * self.lf(epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum])
# Forward
with torch.cuda.amp.autocast(self.amp):
batch = self.preprocess_batch(batch)
self.loss, self.loss_items = self.model(batch)
if RANK != -1:
self.loss *= world_size
self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \
else self.loss_items
# Backward
self.scaler.scale(self.loss).backward()
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
if ni - last_opt_step >= self.accumulate:
self.optimizer_step()
last_opt_step = ni
# Log
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
loss_len = self.tloss.shape[0] if len(self.tloss.size()) else 1
losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0)
if RANK in (-1, 0):
pbar.set_description(
('%11s' * 2 + '%11.4g' * (2 + loss_len)) %
(f'{epoch + 1}/{self.epochs}', mem, *losses, batch['cls'].shape[0], batch['img'].shape[-1]))
self.run_callbacks('on_batch_end')
if self.args.plots and ni in self.plot_idx:
self.plot_training_samples(batch, ni)
self.run_callbacks('on_train_batch_end')
self.lr = {f'lr/pg{ir}': x['lr'] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers
self.scheduler.step()
self.run_callbacks('on_train_epoch_end')
if RANK in (-1, 0):
# Validation
self.ema.update_attr(self.model, include=['yaml', 'nc', 'args', 'names', 'stride', 'class_weights'])
final_epoch = (epoch + 1 == self.epochs) or self.stopper.possible_stop
if self.args.val or final_epoch:
self.metrics, self.fitness = self.validate()
self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **self.lr})
self.stop = self.stopper(epoch + 1, self.fitness)
# Save model
if self.args.save or (epoch + 1 == self.epochs):
self.save_model()
self.run_callbacks('on_model_save')
tnow = time.time()
self.epoch_time = tnow - self.epoch_time_start
self.epoch_time_start = tnow
self.run_callbacks('on_fit_epoch_end')
torch.cuda.empty_cache() # clears GPU vRAM at end of epoch, can help with out of memory errors
# Early Stopping
if RANK != -1: # if DDP training
broadcast_list = [self.stop if RANK == 0 else None]
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
if RANK != 0:
self.stop = broadcast_list[0]
if self.stop:
break # must break all DDP ranks
if RANK in (-1, 0):
# Do final val with best.pt
LOGGER.info(f'\n{epoch - self.start_epoch + 1} epochs completed in '
f'{(time.time() - self.train_time_start) / 3600:.3f} hours.')
self.final_eval()
if self.args.plots:
self.plot_metrics()
self.run_callbacks('on_train_end')
torch.cuda.empty_cache()
self.run_callbacks('teardown')
def save_model(self):
"""Save model checkpoints based on various conditions."""
ckpt = {
'epoch': self.epoch,
'best_fitness': self.best_fitness,
'model': deepcopy(de_parallel(self.model)).half(),
'ema': deepcopy(self.ema.ema).half(),
'updates': self.ema.updates,
'optimizer': self.optimizer.state_dict(),
'train_args': vars(self.args), # save as dict
'date': datetime.now().isoformat(),
'version': __version__}
# Use dill (if exists) to serialize the lambda functions where pickle does not do this
try:
import dill as pickle
except ImportError:
import pickle
# Save last, best and delete
torch.save(ckpt, self.last, pickle_module=pickle)
if self.best_fitness == self.fitness:
torch.save(ckpt, self.best, pickle_module=pickle)
if (self.epoch > 0) and (self.save_period > 0) and (self.epoch % self.save_period == 0):
torch.save(ckpt, self.wdir / f'epoch{self.epoch}.pt', pickle_module=pickle)
del ckpt
@staticmethod
def get_dataset(data):
"""
Get train, val path from data dict if it exists. Returns None if data format is not recognized.
"""
return data['train'], data.get('val') or data.get('test')
def setup_model(self):
"""
load/create/download model for any task.
"""
if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed
return
model, weights = self.model, None
ckpt = None
if str(model).endswith('.pt'):
weights, ckpt = attempt_load_one_weight(model)
cfg = ckpt['model'].yaml
else:
cfg = model
self.model = self.get_model(cfg=cfg, weights=weights, verbose=RANK == -1) # calls Model(cfg, weights)
return ckpt
def optimizer_step(self):
"""Perform a single step of the training optimizer with gradient clipping and EMA update."""
self.scaler.unscale_(self.optimizer) # unscale gradients
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0) # clip gradients
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
if self.ema:
self.ema.update(self.model)
def preprocess_batch(self, batch):
"""
Allows custom preprocessing model inputs and ground truths depending on task type.
"""
return batch
def validate(self):
"""
Runs validation on test set using self.validator. The returned dict is expected to contain "fitness" key.
"""
metrics = self.validator(self)
fitness = metrics.pop('fitness', -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found
if not self.best_fitness or self.best_fitness < fitness:
self.best_fitness = fitness
return metrics, fitness
def get_model(self, cfg=None, weights=None, verbose=True):
"""Get model and raise NotImplementedError for loading cfg files."""
raise NotImplementedError("This task trainer doesn't support loading cfg files")
def get_validator(self):
"""Returns a NotImplementedError when the get_validator function is called."""
raise NotImplementedError('get_validator function not implemented in trainer')
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
"""
Returns dataloader derived from torch.data.Dataloader.
"""
raise NotImplementedError('get_dataloader function not implemented in trainer')
def build_dataset(self, img_path, mode='train', batch=None):
"""Build dataset"""
raise NotImplementedError('build_dataset function not implemented in trainer')
def label_loss_items(self, loss_items=None, prefix='train'):
"""
Returns a loss dict with labelled training loss items tensor
"""
# Not needed for classification but necessary for segmentation & detection
return {'loss': loss_items} if loss_items is not None else ['loss']
def set_model_attributes(self):
"""
To set or update model parameters before training.
"""
self.model.names = self.data['names']
def build_targets(self, preds, targets):
"""Builds target tensors for training YOLO model."""
pass
def progress_string(self):
"""Returns a string describing training progress."""
return ''
# TODO: may need to put these following functions into callback
def plot_training_samples(self, batch, ni):
"""Plots training samples during YOLOv5 training."""
pass
def plot_training_labels(self):
"""Plots training labels for YOLO model."""
pass
def save_metrics(self, metrics):
"""Saves training metrics to a CSV file."""
keys, vals = list(metrics.keys()), list(metrics.values())
n = len(metrics) + 1 # number of cols
s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header
with open(self.csv, 'a') as f:
f.write(s + ('%23.5g,' * n % tuple([self.epoch] + vals)).rstrip(',') + '\n')
def plot_metrics(self):
"""Plot and display metrics visually."""
pass
def on_plot(self, name, data=None):
"""Registers plots (e.g. to be consumed in callbacks)"""
self.plots[name] = {'data': data, 'timestamp': time.time()}
def final_eval(self):
"""Performs final evaluation and validation for object detection YOLO model."""
for f in self.last, self.best:
if f.exists():
strip_optimizer(f) # strip optimizers
if f is self.best:
LOGGER.info(f'\nValidating {f}...')
self.metrics = self.validator(model=f)
self.metrics.pop('fitness', None)
self.run_callbacks('on_fit_epoch_end')
def check_resume(self):
"""Check if resume checkpoint exists and update arguments accordingly."""
resume = self.args.resume
if resume:
try:
exists = isinstance(resume, (str, Path)) and Path(resume).exists()
last = Path(check_file(resume) if exists else get_latest_run())
# Check that resume data YAML exists, otherwise strip to force re-download of dataset
ckpt_args = attempt_load_weights(last).args
if not Path(ckpt_args['data']).exists():
ckpt_args['data'] = self.args.data
self.args = get_cfg(ckpt_args)
self.args.model, resume = str(last), True # reinstate
except Exception as e:
raise FileNotFoundError('Resume checkpoint not found. Please pass a valid checkpoint to resume from, '
"i.e. 'yolo train resume model=path/to/last.pt'") from e
self.resume = resume
def resume_training(self, ckpt):
"""Resume YOLO training from given epoch and best fitness."""
if ckpt is None:
return
best_fitness = 0.0
start_epoch = ckpt['epoch'] + 1
if ckpt['optimizer'] is not None:
self.optimizer.load_state_dict(ckpt['optimizer']) # optimizer
best_fitness = ckpt['best_fitness']
if self.ema and ckpt.get('ema'):
self.ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA
self.ema.updates = ckpt['updates']
if self.resume:
assert start_epoch > 0, \
f'{self.args.model} training to {self.epochs} epochs is finished, nothing to resume.\n' \
f"Start a new training without resuming, i.e. 'yolo train model={self.args.model}'"
LOGGER.info(
f'Resuming training from {self.args.model} from epoch {start_epoch + 1} to {self.epochs} total epochs')
if self.epochs < start_epoch:
LOGGER.info(
f"{self.model} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {self.epochs} more epochs.")
self.epochs += ckpt['epoch'] # finetune additional epochs
self.best_fitness = best_fitness
self.start_epoch = start_epoch
if start_epoch > (self.epochs - self.args.close_mosaic):
LOGGER.info('Closing dataloader mosaic')
if hasattr(self.train_loader.dataset, 'mosaic'):
self.train_loader.dataset.mosaic = False
if hasattr(self.train_loader.dataset, 'close_mosaic'):
self.train_loader.dataset.close_mosaic(hyp=self.args)
def build_optimizer(self, model, name='auto', lr=0.001, momentum=0.9, decay=1e-5, iterations=1e5):
"""
Constructs an optimizer for the given model, based on the specified optimizer name, learning rate,
momentum, weight decay, and number of iterations.
Args:
model (torch.nn.Module): The model for which to build an optimizer.
name (str, optional): The name of the optimizer to use. If 'auto', the optimizer is selected
based on the number of iterations. Default: 'auto'.
lr (float, optional): The learning rate for the optimizer. Default: 0.001.
momentum (float, optional): The momentum factor for the optimizer. Default: 0.9.
decay (float, optional): The weight decay for the optimizer. Default: 1e-5.
iterations (float, optional): The number of iterations, which determines the optimizer if
name is 'auto'. Default: 1e5.
Returns:
(torch.optim.Optimizer): The constructed optimizer.
"""
g = [], [], [] # optimizer parameter groups
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
if name == 'auto':
nc = getattr(model, 'nc', 10) # number of classes
lr_fit = round(0.002 * 5 / (4 + nc), 6) # lr0 fit equation to 6 decimal places
name, lr, momentum = ('SGD', 0.01, 0.9) if iterations > 10000 else ('AdamW', lr_fit, 0.9)
self.args.warmup_bias_lr = 0.0 # no higher than 0.01 for Adam
for module_name, module in model.named_modules():
for param_name, param in module.named_parameters(recurse=False):
fullname = f'{module_name}.{param_name}' if module_name else param_name
if 'bias' in fullname: # bias (no decay)
g[2].append(param)
elif isinstance(module, bn): # weight (no decay)
g[1].append(param)
else: # weight (with decay)
g[0].append(param)
if name in ('Adam', 'Adamax', 'AdamW', 'NAdam', 'RAdam'):
optimizer = getattr(optim, name, optim.Adam)(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
elif name == 'RMSProp':
optimizer = optim.RMSprop(g[2], lr=lr, momentum=momentum)
elif name == 'SGD':
optimizer = optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
else:
raise NotImplementedError(
f"Optimizer '{name}' not found in list of available optimizers "
f'[Adam, AdamW, NAdam, RAdam, RMSProp, SGD, auto].'
'To request support for addition optimizers please visit https://github.com/ultralytics/ultralytics.')
optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay
optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights)
LOGGER.info(
f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}, momentum={momentum}) with parameter groups "
f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias(decay=0.0)')
return optimizer

View File

@ -1,278 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Check a model's accuracy on a test or val split of a dataset
Usage:
$ yolo mode=val model=yolov8n.pt data=coco128.yaml imgsz=640
Usage - formats:
$ yolo mode=val model=yolov8n.pt # PyTorch
yolov8n.torchscript # TorchScript
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolov8n_openvino_model # OpenVINO
yolov8n.engine # TensorRT
yolov8n.mlmodel # CoreML (macOS-only)
yolov8n_saved_model # TensorFlow SavedModel
yolov8n.pb # TensorFlow GraphDef
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
"""
import json
import time
from pathlib import Path
import torch
from tqdm import tqdm
from ultralytics.nn.autobackend import AutoBackend
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.data.utils import check_cls_dataset, check_det_dataset
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, callbacks, colorstr, emojis
from ultralytics.yolo.utils.checks import check_imgsz
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import de_parallel, select_device, smart_inference_mode
class BaseValidator:
"""
BaseValidator
A base class for creating validators.
Attributes:
dataloader (DataLoader): Dataloader to use for validation.
pbar (tqdm): Progress bar to update during validation.
args (SimpleNamespace): Configuration for the validator.
model (nn.Module): Model to validate.
data (dict): Data dictionary.
device (torch.device): Device to use for validation.
batch_i (int): Current batch index.
training (bool): Whether the model is in training mode.
speed (float): Batch processing speed in seconds.
jdict (dict): Dictionary to store validation results.
save_dir (Path): Directory to save results.
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""
Initializes a BaseValidator instance.
Args:
dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation.
save_dir (Path): Directory to save results.
pbar (tqdm.tqdm): Progress bar for displaying progress.
args (SimpleNamespace): Configuration for the validator.
"""
self.dataloader = dataloader
self.pbar = pbar
self.args = args or get_cfg(DEFAULT_CFG)
self.model = None
self.data = None
self.device = None
self.batch_i = None
self.training = True
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
self.jdict = None
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task
name = self.args.name or f'{self.args.mode}'
self.save_dir = save_dir or increment_path(Path(project) / name,
exist_ok=self.args.exist_ok if RANK in (-1, 0) else True)
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
if self.args.conf is None:
self.args.conf = 0.001 # default conf=0.001
self.plots = {}
self.callbacks = _callbacks or callbacks.get_default_callbacks()
@smart_inference_mode()
def __call__(self, trainer=None, model=None):
"""
Supports validation of a pre-trained model if passed or a model being trained
if trainer is passed (trainer gets priority).
"""
self.training = trainer is not None
if self.training:
self.device = trainer.device
self.data = trainer.data
model = trainer.ema.ema or trainer.model
self.args.half = self.device.type != 'cpu' # force FP16 val during training
model = model.half() if self.args.half else model.float()
self.model = model
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
self.args.plots = trainer.stopper.possible_stop or (trainer.epoch == trainer.epochs - 1)
model.eval()
else:
callbacks.add_integration_callbacks(self)
self.run_callbacks('on_val_start')
assert model is not None, 'Either trainer or model is needed for validation'
model = AutoBackend(model,
device=select_device(self.args.device, self.args.batch),
dnn=self.args.dnn,
data=self.args.data,
fp16=self.args.half)
self.model = model
self.device = model.device # update device
self.args.half = model.fp16 # update half
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_imgsz(self.args.imgsz, stride=stride)
if engine:
self.args.batch = model.batch_size
elif not pt and not jit:
self.args.batch = 1 # export.py models default to batch-size 1
LOGGER.info(f'Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
if isinstance(self.args.data, str) and self.args.data.endswith('.yaml'):
self.data = check_det_dataset(self.args.data)
elif self.args.task == 'classify':
self.data = check_cls_dataset(self.args.data, split=self.args.split)
else:
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' for task={self.args.task} not found ❌"))
if self.device.type == 'cpu':
self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading
if not pt:
self.args.rect = False
self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch)
model.eval()
model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) # warmup
dt = Profile(), Profile(), Profile(), Profile()
n_batches = len(self.dataloader)
desc = self.get_desc()
# NOTE: keeping `not self.training` in tqdm will eliminate pbar after segmentation evaluation during training,
# which may affect classification task since this arg is in yolov5/classify/val.py.
# bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT)
self.init_metrics(de_parallel(model))
self.jdict = [] # empty before each val
for batch_i, batch in enumerate(bar):
self.run_callbacks('on_val_batch_start')
self.batch_i = batch_i
# Preprocess
with dt[0]:
batch = self.preprocess(batch)
# Inference
with dt[1]:
preds = model(batch['img'], augment=self.args.augment)
# Loss
with dt[2]:
if self.training:
self.loss += model.loss(batch, preds)[1]
# Postprocess
with dt[3]:
preds = self.postprocess(preds)
self.update_metrics(preds, batch)
if self.args.plots and batch_i < 3:
self.plot_val_samples(batch, batch_i)
self.plot_predictions(batch, preds, batch_i)
self.run_callbacks('on_val_batch_end')
stats = self.get_stats()
self.check_stats(stats)
self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1E3 for x in dt)))
self.finalize_metrics()
self.print_results()
self.run_callbacks('on_val_end')
if self.training:
model.float()
results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix='val')}
return {k: round(float(v), 5) for k, v in results.items()} # return results as 5 decimal place floats
else:
LOGGER.info('Speed: %.1fms preprocess, %.1fms inference, %.1fms loss, %.1fms postprocess per image' %
tuple(self.speed.values()))
if self.args.save_json and self.jdict:
with open(str(self.save_dir / 'predictions.json'), 'w') as f:
LOGGER.info(f'Saving {f.name}...')
json.dump(self.jdict, f) # flatten and save
stats = self.eval_json(stats) # update stats
if self.args.plots or self.args.save_json:
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
return stats
def add_callback(self, event: str, callback):
"""Appends the given callback."""
self.callbacks[event].append(callback)
def run_callbacks(self, event: str):
"""Runs all callbacks associated with a specified event."""
for callback in self.callbacks.get(event, []):
callback(self)
def get_dataloader(self, dataset_path, batch_size):
"""Get data loader from dataset path and batch size."""
raise NotImplementedError('get_dataloader function not implemented for this validator')
def build_dataset(self, img_path):
"""Build dataset"""
raise NotImplementedError('build_dataset function not implemented in validator')
def preprocess(self, batch):
"""Preprocesses an input batch."""
return batch
def postprocess(self, preds):
"""Describes and summarizes the purpose of 'postprocess()' but no details mentioned."""
return preds
def init_metrics(self, model):
"""Initialize performance metrics for the YOLO model."""
pass
def update_metrics(self, preds, batch):
"""Updates metrics based on predictions and batch."""
pass
def finalize_metrics(self, *args, **kwargs):
"""Finalizes and returns all metrics."""
pass
def get_stats(self):
"""Returns statistics about the model's performance."""
return {}
def check_stats(self, stats):
"""Checks statistics."""
pass
def print_results(self):
"""Prints the results of the model's predictions."""
pass
def get_desc(self):
"""Get description of the YOLO model."""
pass
@property
def metric_keys(self):
"""Returns the metric keys used in YOLO training/validation."""
return []
def on_plot(self, name, data=None):
"""Registers plots (e.g. to be consumed in callbacks)"""
self.plots[name] = {'data': data, 'timestamp': time.time()}
# TODO: may need to put these following functions into callback
def plot_val_samples(self, batch, ni):
"""Plots validation samples during training."""
pass
def plot_predictions(self, batch, preds, ni):
"""Plots YOLO model predictions on batch images."""
pass
def pred_to_json(self, preds, batch):
"""Convert predictions to JSON format."""
pass
def eval_json(self, stats):
"""Evaluate and return JSON format of prediction statistics."""
pass

View File

@ -1,8 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from .model import FastSAM
from .predict import FastSAMPredictor
from .prompt import FastSAMPrompt
from .val import FastSAMValidator
__all__ = 'FastSAMPredictor', 'FastSAM', 'FastSAMPrompt', 'FastSAMValidator'

View File

@ -1,111 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
FastSAM model interface.
Usage - Predict:
from ultralytics import FastSAM
model = FastSAM('last.pt')
results = model.predict('ultralytics/assets/bus.jpg')
"""
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.engine.model import YOLO
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, ROOT, is_git_dir
from ultralytics.yolo.utils.checks import check_imgsz
from ...yolo.utils.torch_utils import model_info, smart_inference_mode
from .predict import FastSAMPredictor
class FastSAM(YOLO):
def __init__(self, model='FastSAM-x.pt'):
"""Call the __init__ method of the parent class (YOLO) with the updated default model"""
if model == 'FastSAM.pt':
model = 'FastSAM-x.pt'
super().__init__(model=model)
# any additional initialization code for FastSAM
@smart_inference_mode()
def predict(self, source=None, stream=False, **kwargs):
"""
Perform prediction using the YOLO model.
Args:
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
Accepts all source types accepted by the YOLO model.
stream (bool): Whether to stream the predictions or not. Defaults to False.
**kwargs : Additional keyword arguments passed to the predictor.
Check the 'configuration' section in the documentation for all available options.
Returns:
(List[ultralytics.yolo.engine.results.Results]): The prediction results.
"""
if source is None:
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
overrides = self.overrides.copy()
overrides['conf'] = 0.25
overrides.update(kwargs) # prefer kwargs
overrides['mode'] = kwargs.get('mode', 'predict')
assert overrides['mode'] in ['track', 'predict']
overrides['save'] = kwargs.get('save', False) # do not save by default if called in Python
self.predictor = FastSAMPredictor(overrides=overrides)
self.predictor.setup_model(model=self.model, verbose=False)
return self.predictor(source, stream=stream)
def train(self, **kwargs):
"""Function trains models but raises an error as FastSAM models do not support training."""
raise NotImplementedError("FastSAM models don't support training")
def val(self, **kwargs):
"""Run validation given dataset."""
overrides = dict(task='segment', mode='val')
overrides.update(kwargs) # prefer kwargs
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
validator = FastSAM(args=args)
validator(model=self.model)
self.metrics = validator.metrics
return validator.metrics
@smart_inference_mode()
def export(self, **kwargs):
"""
Export model.
Args:
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
"""
overrides = dict(task='detect')
overrides.update(kwargs)
overrides['mode'] = 'export'
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.task = self.task
if args.imgsz == DEFAULT_CFG.imgsz:
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
if args.batch == DEFAULT_CFG.batch:
args.batch = 1 # default to 1 if not modified
return Exporter(overrides=args)(model=self.model)
def info(self, detailed=False, verbose=True):
"""
Logs model info.
Args:
detailed (bool): Show detailed information about model.
verbose (bool): Controls verbosity.
"""
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
def __call__(self, source=None, stream=False, **kwargs):
"""Calls the 'predict' function with given arguments to perform object detection."""
return self.predict(source, stream, **kwargs)
def __getattr__(self, attr):
"""Raises error if object has no requested attribute."""
name = self.__class__.__name__
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")

View File

@ -1,53 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.yolo.engine.results import Results
from ultralytics.yolo.fastsam.utils import bbox_iou
from ultralytics.yolo.utils import DEFAULT_CFG, ops
from ultralytics.yolo.v8.detect.predict import DetectionPredictor
class FastSAMPredictor(DetectionPredictor):
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
super().__init__(cfg, overrides, _callbacks)
self.args.task = 'segment'
def postprocess(self, preds, img, orig_imgs):
"""TODO: filter by classes."""
p = ops.non_max_suppression(preds[0],
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
nc=len(self.model.names),
classes=self.args.classes)
full_box = torch.zeros_like(p[0][0])
full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0
full_box = full_box.view(1, -1)
critical_iou_index = bbox_iou(full_box[0][:4], p[0][:, :4], iou_thres=0.9, image_shape=img.shape[2:])
if critical_iou_index.numel() != 0:
full_box[0][4] = p[0][critical_iou_index][:, 4]
full_box[0][6:] = p[0][critical_iou_index][:, 6:]
p[0][critical_iou_index] = full_box
results = []
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
for i, pred in enumerate(p):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
path = self.batch[0]
img_path = path[i] if isinstance(path, list) else path
if not len(pred): # save empty boxes
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6]))
continue
if self.args.retina_masks:
if not isinstance(orig_imgs, torch.Tensor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
else:
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
if not isinstance(orig_imgs, torch.Tensor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
results.append(
Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
return results

View File

@ -1,406 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image
class FastSAMPrompt:
def __init__(self, img_path, results, device='cuda') -> None:
# self.img_path = img_path
self.device = device
self.results = results
self.img_path = img_path
self.ori_img = cv2.imread(img_path)
# Import and assign clip
try:
import clip # for linear_assignment
except ImportError:
from ultralytics.yolo.utils.checks import check_requirements
check_requirements('git+https://github.com/openai/CLIP.git') # required before installing lap from source
import clip
self.clip = clip
@staticmethod
def _segment_image(image, bbox):
image_array = np.array(image)
segmented_image_array = np.zeros_like(image_array)
x1, y1, x2, y2 = bbox
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
segmented_image = Image.fromarray(segmented_image_array)
black_image = Image.new('RGB', image.size, (255, 255, 255))
# transparency_mask = np.zeros_like((), dtype=np.uint8)
transparency_mask = np.zeros((image_array.shape[0], image_array.shape[1]), dtype=np.uint8)
transparency_mask[y1:y2, x1:x2] = 255
transparency_mask_image = Image.fromarray(transparency_mask, mode='L')
black_image.paste(segmented_image, mask=transparency_mask_image)
return black_image
@staticmethod
def _format_results(result, filter=0):
annotations = []
n = len(result.masks.data)
for i in range(n):
mask = result.masks.data[i] == 1.0
if torch.sum(mask) < filter:
continue
annotation = {
'id': i,
'segmentation': mask.cpu().numpy(),
'bbox': result.boxes.data[i],
'score': result.boxes.conf[i]}
annotation['area'] = annotation['segmentation'].sum()
annotations.append(annotation)
return annotations
@staticmethod
def filter_masks(annotations): # filter the overlap mask
annotations.sort(key=lambda x: x['area'], reverse=True)
to_remove = set()
for i in range(len(annotations)):
a = annotations[i]
for j in range(i + 1, len(annotations)):
b = annotations[j]
if i != j and j not in to_remove and b['area'] < a['area'] and \
(a['segmentation'] & b['segmentation']).sum() / b['segmentation'].sum() > 0.8:
to_remove.add(j)
return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove
@staticmethod
def _get_bbox_from_mask(mask):
mask = mask.astype(np.uint8)
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
x1, y1, w, h = cv2.boundingRect(contours[0])
x2, y2 = x1 + w, y1 + h
if len(contours) > 1:
for b in contours:
x_t, y_t, w_t, h_t = cv2.boundingRect(b)
# 将多个bbox合并成一个
x1 = min(x1, x_t)
y1 = min(y1, y_t)
x2 = max(x2, x_t + w_t)
y2 = max(y2, y_t + h_t)
h = y2 - y1
w = x2 - x1
return [x1, y1, x2, y2]
def plot(self,
annotations,
output,
bbox=None,
points=None,
point_label=None,
mask_random_color=True,
better_quality=True,
retina=False,
withContours=True):
if isinstance(annotations[0], dict):
annotations = [annotation['segmentation'] for annotation in annotations]
result_name = os.path.basename(self.img_path)
image = self.ori_img
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
original_h = image.shape[0]
original_w = image.shape[1]
# for macOS only
# plt.switch_backend('TkAgg')
plt.figure(figsize=(original_w / 100, original_h / 100))
# Add subplot with no margin.
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.imshow(image)
if better_quality:
if isinstance(annotations[0], torch.Tensor):
annotations = np.array(annotations.cpu())
for i, mask in enumerate(annotations):
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
if self.device == 'cpu':
annotations = np.array(annotations)
self.fast_show_mask(
annotations,
plt.gca(),
random_color=mask_random_color,
bbox=bbox,
points=points,
pointlabel=point_label,
retinamask=retina,
target_height=original_h,
target_width=original_w,
)
else:
if isinstance(annotations[0], np.ndarray):
annotations = torch.from_numpy(annotations)
self.fast_show_mask_gpu(
annotations,
plt.gca(),
random_color=mask_random_color,
bbox=bbox,
points=points,
pointlabel=point_label,
retinamask=retina,
target_height=original_h,
target_width=original_w,
)
if isinstance(annotations, torch.Tensor):
annotations = annotations.cpu().numpy()
if withContours:
contour_all = []
temp = np.zeros((original_h, original_w, 1))
for i, mask in enumerate(annotations):
if type(mask) == dict:
mask = mask['segmentation']
annotation = mask.astype(np.uint8)
if not retina:
annotation = cv2.resize(
annotation,
(original_w, original_h),
interpolation=cv2.INTER_NEAREST,
)
contours, hierarchy = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contour_all.extend(iter(contours))
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
color = np.array([0 / 255, 0 / 255, 1.0, 0.8])
contour_mask = temp / 255 * color.reshape(1, 1, -1)
plt.imshow(contour_mask)
save_path = output
if not os.path.exists(save_path):
os.makedirs(save_path)
plt.axis('off')
fig = plt.gcf()
plt.draw()
try:
buf = fig.canvas.tostring_rgb()
except AttributeError:
fig.canvas.draw()
buf = fig.canvas.tostring_rgb()
cols, rows = fig.canvas.get_width_height()
img_array = np.frombuffer(buf, dtype=np.uint8).reshape(rows, cols, 3)
cv2.imwrite(os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
# CPU post process
def fast_show_mask(
self,
annotation,
ax,
random_color=False,
bbox=None,
points=None,
pointlabel=None,
retinamask=True,
target_height=960,
target_width=960,
):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
# 将annotation 按照面积 排序
areas = np.sum(annotation, axis=(1, 2))
sorted_indices = np.argsort(areas)
annotation = annotation[sorted_indices]
index = (annotation != 0).argmax(axis=0)
if random_color:
color = np.random.random((msak_sum, 1, 1, 3))
else:
color = np.ones((msak_sum, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 1.0])
transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6
visual = np.concatenate([color, transparency], axis=-1)
mask_image = np.expand_dims(annotation, -1) * visual
show = np.zeros((height, weight, 4))
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# 使用向量化索引更新show的值
show[h_indices, w_indices, :] = mask_image[indices]
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
# draw point
if points is not None:
plt.scatter(
[point[0] for i, point in enumerate(points) if pointlabel[i] == 1],
[point[1] for i, point in enumerate(points) if pointlabel[i] == 1],
s=20,
c='y',
)
plt.scatter(
[point[0] for i, point in enumerate(points) if pointlabel[i] == 0],
[point[1] for i, point in enumerate(points) if pointlabel[i] == 0],
s=20,
c='m',
)
if not retinamask:
show = cv2.resize(show, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
ax.imshow(show)
def fast_show_mask_gpu(
self,
annotation,
ax,
random_color=False,
bbox=None,
points=None,
pointlabel=None,
retinamask=True,
target_height=960,
target_width=960,
):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
areas = torch.sum(annotation, dim=(1, 2))
sorted_indices = torch.argsort(areas, descending=False)
annotation = annotation[sorted_indices]
# 找每个位置第一个非零值下标
index = (annotation != 0).to(torch.long).argmax(dim=0)
if random_color:
color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device)
else:
color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor([30 / 255, 144 / 255, 1.0]).to(
annotation.device)
transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6
visual = torch.cat([color, transparency], dim=-1)
mask_image = torch.unsqueeze(annotation, -1) * visual
# 按index取数index指每个位置选哪个batch的数把mask_image转成一个batch的形式
show = torch.zeros((height, weight, 4)).to(annotation.device)
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight), indexing='ij')
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# 使用向量化索引更新show的值
show[h_indices, w_indices, :] = mask_image[indices]
show_cpu = show.cpu().numpy()
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
# draw point
if points is not None:
plt.scatter(
[point[0] for i, point in enumerate(points) if pointlabel[i] == 1],
[point[1] for i, point in enumerate(points) if pointlabel[i] == 1],
s=20,
c='y',
)
plt.scatter(
[point[0] for i, point in enumerate(points) if pointlabel[i] == 0],
[point[1] for i, point in enumerate(points) if pointlabel[i] == 0],
s=20,
c='m',
)
if not retinamask:
show_cpu = cv2.resize(show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
ax.imshow(show_cpu)
# clip
@torch.no_grad()
def retrieve(self, model, preprocess, elements, search_text: str, device) -> int:
preprocessed_images = [preprocess(image).to(device) for image in elements]
tokenized_text = self.clip.tokenize([search_text]).to(device)
stacked_images = torch.stack(preprocessed_images)
image_features = model.encode_image(stacked_images)
text_features = model.encode_text(tokenized_text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
probs = 100.0 * image_features @ text_features.T
return probs[:, 0].softmax(dim=0)
def _crop_image(self, format_results):
image = Image.fromarray(cv2.cvtColor(self.ori_img, cv2.COLOR_BGR2RGB))
ori_w, ori_h = image.size
annotations = format_results
mask_h, mask_w = annotations[0]['segmentation'].shape
if ori_w != mask_w or ori_h != mask_h:
image = image.resize((mask_w, mask_h))
cropped_boxes = []
cropped_images = []
not_crop = []
filter_id = []
# annotations, _ = filter_masks(annotations)
# filter_id = list(_)
for _, mask in enumerate(annotations):
if np.sum(mask['segmentation']) <= 100:
filter_id.append(_)
continue
bbox = self._get_bbox_from_mask(mask['segmentation']) # mask 的 bbox
cropped_boxes.append(self._segment_image(image, bbox)) # 保存裁剪的图片
# cropped_boxes.append(segment_image(image,mask["segmentation"]))
cropped_images.append(bbox) # 保存裁剪的图片的bbox
return cropped_boxes, cropped_images, not_crop, filter_id, annotations
def box_prompt(self, bbox):
assert (bbox[2] != 0 and bbox[3] != 0)
masks = self.results[0].masks.data
target_height = self.ori_img.shape[0]
target_width = self.ori_img.shape[1]
h = masks.shape[1]
w = masks.shape[2]
if h != target_height or w != target_width:
bbox = [
int(bbox[0] * w / target_width),
int(bbox[1] * h / target_height),
int(bbox[2] * w / target_width),
int(bbox[3] * h / target_height), ]
bbox[0] = max(round(bbox[0]), 0)
bbox[1] = max(round(bbox[1]), 0)
bbox[2] = min(round(bbox[2]), w)
bbox[3] = min(round(bbox[3]), h)
# IoUs = torch.zeros(len(masks), dtype=torch.float32)
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
masks_area = torch.sum(masks[:, bbox[1]:bbox[3], bbox[0]:bbox[2]], dim=(1, 2))
orig_masks_area = torch.sum(masks, dim=(1, 2))
union = bbox_area + orig_masks_area - masks_area
IoUs = masks_area / union
max_iou_index = torch.argmax(IoUs)
return np.array([masks[max_iou_index].cpu().numpy()])
def point_prompt(self, points, pointlabel): # numpy 处理
masks = self._format_results(self.results[0], 0)
target_height = self.ori_img.shape[0]
target_width = self.ori_img.shape[1]
h = masks[0]['segmentation'].shape[0]
w = masks[0]['segmentation'].shape[1]
if h != target_height or w != target_width:
points = [[int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points]
onemask = np.zeros((h, w))
for i, annotation in enumerate(masks):
mask = annotation['segmentation'] if type(annotation) == dict else annotation
for i, point in enumerate(points):
if mask[point[1], point[0]] == 1 and pointlabel[i] == 1:
onemask += mask
if mask[point[1], point[0]] == 1 and pointlabel[i] == 0:
onemask -= mask
onemask = onemask >= 1
return np.array([onemask])
def text_prompt(self, text):
format_results = self._format_results(self.results[0], 0)
cropped_boxes, cropped_images, not_crop, filter_id, annotations = self._crop_image(format_results)
clip_model, preprocess = self.clip.load('ViT-B/32', device=self.device)
scores = self.retrieve(clip_model, preprocess, cropped_boxes, text, device=self.device)
max_idx = scores.argsort()
max_idx = max_idx[-1]
max_idx += sum(np.array(filter_id) <= int(max_idx))
return np.array([annotations[max_idx]['segmentation']])
def everything_prompt(self):
return self.results[0].masks.data

View File

@ -1,64 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
def adjust_bboxes_to_image_border(boxes, image_shape, threshold=20):
"""
Adjust bounding boxes to stick to image border if they are within a certain threshold.
Args:
boxes (torch.Tensor): (n, 4)
image_shape (tuple): (height, width)
threshold (int): pixel threshold
Returns:
adjusted_boxes (torch.Tensor): adjusted bounding boxes
"""
# Image dimensions
h, w = image_shape
# Adjust boxes
boxes[boxes[:, 0] < threshold, 0] = 0 # x1
boxes[boxes[:, 1] < threshold, 1] = 0 # y1
boxes[boxes[:, 2] > w - threshold, 2] = w # x2
boxes[boxes[:, 3] > h - threshold, 3] = h # y2
return boxes
def bbox_iou(box1, boxes, iou_thres=0.9, image_shape=(640, 640), raw_output=False):
"""
Compute the Intersection-Over-Union of a bounding box with respect to an array of other bounding boxes.
Args:
box1 (torch.Tensor): (4, )
boxes (torch.Tensor): (n, 4)
Returns:
high_iou_indices (torch.Tensor): Indices of boxes with IoU > thres
"""
boxes = adjust_bboxes_to_image_border(boxes, image_shape)
# obtain coordinates for intersections
x1 = torch.max(box1[0], boxes[:, 0])
y1 = torch.max(box1[1], boxes[:, 1])
x2 = torch.min(box1[2], boxes[:, 2])
y2 = torch.min(box1[3], boxes[:, 3])
# compute the area of intersection
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
# compute the area of both individual boxes
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
# compute the area of union
union = box1_area + box2_area - intersection
# compute the IoU
iou = intersection / union # Should be shape (n, )
if raw_output:
return 0 if iou.numel() == 0 else iou
# return indices of boxes with IoU > thres
return torch.nonzero(iou > iou_thres).flatten()

View File

@ -1,244 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from multiprocessing.pool import ThreadPool
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from ultralytics.yolo.utils import LOGGER, NUM_THREADS, ops
from ultralytics.yolo.utils.checks import check_requirements
from ultralytics.yolo.utils.metrics import SegmentMetrics, box_iou, mask_iou
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
from ultralytics.yolo.v8.detect import DetectionValidator
class FastSAMValidator(DetectionValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics."""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.args.task = 'segment'
self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
def preprocess(self, batch):
"""Preprocesses batch by converting masks to float and sending to device."""
batch = super().preprocess(batch)
batch['masks'] = batch['masks'].to(self.device).float()
return batch
def init_metrics(self, model):
"""Initialize metrics and select mask processing function based on save_json flag."""
super().init_metrics(model)
self.plot_masks = []
if self.args.save_json:
check_requirements('pycocotools>=2.0.6')
self.process = ops.process_mask_upsample # more accurate
else:
self.process = ops.process_mask # faster
def get_desc(self):
"""Return a formatted description of evaluation metrics."""
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P',
'R', 'mAP50', 'mAP50-95)')
def postprocess(self, preds):
"""Postprocesses YOLO predictions and returns output detections with proto."""
p = ops.non_max_suppression(preds[0],
self.args.conf,
self.args.iou,
labels=self.lb,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det,
nc=self.nc)
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
return p, proto
def update_metrics(self, preds, batch):
"""Metrics."""
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
idx = batch['batch_idx'] == si
cls = batch['cls'][idx]
bbox = batch['bboxes'][idx]
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
shape = batch['ori_shape'][si]
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
self.seen += 1
if npr == 0:
if nl:
self.stats.append((correct_bboxes, correct_masks, *torch.zeros(
(2, 0), device=self.device), cls.squeeze(-1)))
if self.args.plots:
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
continue
# Masks
midx = [si] if self.args.overlap_mask else idx
gt_masks = batch['masks'][midx]
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch['img'][si].shape[1:])
# Predictions
if self.args.single_cls:
pred[:, 5] = 0
predn = pred.clone()
ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape,
ratio_pad=batch['ratio_pad'][si]) # native-space pred
# Evaluate
if nl:
height, width = batch['img'].shape[2:]
tbox = ops.xywh2xyxy(bbox) * torch.tensor(
(width, height, width, height), device=self.device) # target boxes
ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape,
ratio_pad=batch['ratio_pad'][si]) # native-space labels
labelsn = torch.cat((cls, tbox), 1) # native-space labels
correct_bboxes = self._process_batch(predn, labelsn)
# TODO: maybe remove these `self.` arguments as they already are member variable
correct_masks = self._process_batch(predn,
labelsn,
pred_masks,
gt_masks,
overlap=self.args.overlap_mask,
masks=True)
if self.args.plots:
self.confusion_matrix.process_batch(predn, labelsn)
# Append correct_masks, correct_boxes, pconf, pcls, tcls
self.stats.append((correct_bboxes, correct_masks, pred[:, 4], pred[:, 5], cls.squeeze(-1)))
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
if self.args.plots and self.batch_i < 3:
self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot
# Save
if self.args.save_json:
pred_masks = ops.scale_image(pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(),
shape,
ratio_pad=batch['ratio_pad'][si])
self.pred_to_json(predn, batch['im_file'][si], pred_masks)
# if self.args.save_txt:
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
def finalize_metrics(self, *args, **kwargs):
"""Sets speed and confusion matrix for evaluation metrics."""
self.metrics.speed = self.speed
self.metrics.confusion_matrix = self.confusion_matrix
def _process_batch(self, detections, labels, pred_masks=None, gt_masks=None, overlap=False, masks=False):
"""
Return correct prediction matrix
Arguments:
detections (array[N, 6]), x1, y1, x2, y2, conf, class
labels (array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (array[N, 10]), for 10 IoU levels
"""
if masks:
if overlap:
nl = len(labels)
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
if gt_masks.shape[1:] != pred_masks.shape[1:]:
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0]
gt_masks = gt_masks.gt_(0.5)
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
else: # boxes
iou = box_iou(labels[:, 1:], detections[:, :4])
correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool)
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(self.iouv)):
x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
def plot_val_samples(self, batch, ni):
"""Plots validation samples with bounding box labels."""
plot_images(batch['img'],
batch['batch_idx'],
batch['cls'].squeeze(-1),
batch['bboxes'],
batch['masks'],
paths=batch['im_file'],
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
names=self.names,
on_plot=self.on_plot)
def plot_predictions(self, batch, preds, ni):
"""Plots batch predictions with masks and bounding boxes."""
plot_images(
batch['img'],
*output_to_target(preds[0], max_det=15), # not set to self.args.max_det due to slow plotting speed
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks,
paths=batch['im_file'],
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
names=self.names,
on_plot=self.on_plot) # pred
self.plot_masks.clear()
def pred_to_json(self, predn, filename, pred_masks):
"""Save one JSON result."""
# Example result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
from pycocotools.mask import encode # noqa
def single_encode(x):
"""Encode predicted masks as RLE and append results to jdict."""
rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0]
rle['counts'] = rle['counts'].decode('utf-8')
return rle
stem = Path(filename).stem
image_id = int(stem) if stem.isnumeric() else stem
box = ops.xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
pred_masks = np.transpose(pred_masks, (2, 0, 1))
with ThreadPool(NUM_THREADS) as pool:
rles = pool.map(single_encode, pred_masks)
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
self.jdict.append({
'image_id': image_id,
'category_id': self.class_map[int(p[5])],
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5),
'segmentation': rles[i]})
def eval_json(self, stats):
"""Return COCO-style object detection evaluation metrics."""
if self.args.save_json and self.is_coco and len(self.jdict):
anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations
pred_json = self.save_dir / 'predictions.json' # predictions
LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
check_requirements('pycocotools>=2.0.6')
from pycocotools.coco import COCO # noqa
from pycocotools.cocoeval import COCOeval # noqa
for x in anno_json, pred_json:
assert x.is_file(), f'{x} file not found'
anno = COCO(str(anno_json)) # init annotations api
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm')]):
if self.is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval
eval.evaluate()
eval.accumulate()
eval.summarize()
idx = i * 4 + 2
stats[self.metrics.keys[idx + 1]], stats[
self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50
except Exception as e:
LOGGER.warning(f'pycocotools unable to run: {e}')
return stats

View File

@ -1,7 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from .model import NAS
from .predict import NASPredictor
from .val import NASValidator
__all__ = 'NASPredictor', 'NASValidator', 'NAS'

View File

@ -1,133 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
YOLO-NAS model interface.
Usage - Predict:
from ultralytics import NAS
model = NAS('yolo_nas_s')
results = model.predict('ultralytics/assets/bus.jpg')
"""
from pathlib import Path
import torch
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, ROOT, is_git_dir
from ultralytics.yolo.utils.checks import check_imgsz
from ...yolo.utils.torch_utils import model_info, smart_inference_mode
from .predict import NASPredictor
from .val import NASValidator
class NAS:
def __init__(self, model='yolo_nas_s.pt') -> None:
# Load or create new NAS model
import super_gradients
self.predictor = None
suffix = Path(model).suffix
if suffix == '.pt':
self._load(model)
elif suffix == '':
self.model = super_gradients.training.models.get(model, pretrained_weights='coco')
self.task = 'detect'
self.model.args = DEFAULT_CFG_DICT # attach args to model
# Standardize model
self.model.fuse = lambda verbose=True: self.model
self.model.stride = torch.tensor([32])
self.model.names = dict(enumerate(self.model._class_names))
self.model.is_fused = lambda: False # for info()
self.model.yaml = {} # for info()
self.model.pt_path = model # for export()
self.model.task = 'detect' # for export()
self.info()
@smart_inference_mode()
def _load(self, weights: str):
self.model = torch.load(weights)
@smart_inference_mode()
def predict(self, source=None, stream=False, **kwargs):
"""
Perform prediction using the YOLO model.
Args:
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
Accepts all source types accepted by the YOLO model.
stream (bool): Whether to stream the predictions or not. Defaults to False.
**kwargs : Additional keyword arguments passed to the predictor.
Check the 'configuration' section in the documentation for all available options.
Returns:
(List[ultralytics.yolo.engine.results.Results]): The prediction results.
"""
if source is None:
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
overrides = dict(conf=0.25, task='detect', mode='predict')
overrides.update(kwargs) # prefer kwargs
if not self.predictor:
self.predictor = NASPredictor(overrides=overrides)
self.predictor.setup_model(model=self.model)
else: # only update args if predictor is already setup
self.predictor.args = get_cfg(self.predictor.args, overrides)
return self.predictor(source, stream=stream)
def train(self, **kwargs):
"""Function trains models but raises an error as NAS models do not support training."""
raise NotImplementedError("NAS models don't support training")
def val(self, **kwargs):
"""Run validation given dataset."""
overrides = dict(task='detect', mode='val')
overrides.update(kwargs) # prefer kwargs
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
validator = NASValidator(args=args)
validator(model=self.model)
self.metrics = validator.metrics
return validator.metrics
@smart_inference_mode()
def export(self, **kwargs):
"""
Export model.
Args:
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
"""
overrides = dict(task='detect')
overrides.update(kwargs)
overrides['mode'] = 'export'
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.task = self.task
if args.imgsz == DEFAULT_CFG.imgsz:
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
if args.batch == DEFAULT_CFG.batch:
args.batch = 1 # default to 1 if not modified
return Exporter(overrides=args)(model=self.model)
def info(self, detailed=False, verbose=True):
"""
Logs model info.
Args:
detailed (bool): Show detailed information about model.
verbose (bool): Controls verbosity.
"""
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
def __call__(self, source=None, stream=False, **kwargs):
"""Calls the 'predict' function with given arguments to perform object detection."""
return self.predict(source, stream, **kwargs)
def __getattr__(self, attr):
"""Raises error if object has no requested attribute."""
name = self.__class__.__name__
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")

View File

@ -1,35 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.yolo.engine.predictor import BasePredictor
from ultralytics.yolo.engine.results import Results
from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.ops import xyxy2xywh
class NASPredictor(BasePredictor):
def postprocess(self, preds_in, img, orig_imgs):
"""Postprocesses predictions and returns a list of Results objects."""
# Cat boxes and class scores
boxes = xyxy2xywh(preds_in[0][0])
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
preds = ops.non_max_suppression(preds,
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
classes=self.args.classes)
results = []
for i, pred in enumerate(preds):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
if not isinstance(orig_imgs, torch.Tensor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
path = self.batch[0]
img_path = path[i] if isinstance(path, list) else path
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
return results

View File

@ -1,25 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.ops import xyxy2xywh
from ultralytics.yolo.v8.detect import DetectionValidator
__all__ = ['NASValidator']
class NASValidator(DetectionValidator):
def postprocess(self, preds_in):
"""Apply Non-maximum suppression to prediction outputs."""
boxes = xyxy2xywh(preds_in[0][0])
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
return ops.non_max_suppression(preds,
self.args.conf,
self.args.iou,
labels=self.lb,
multi_label=False,
agnostic=self.args.single_cls,
max_det=self.args.max_det,
max_time_img=0.5)

View File

@ -1,809 +1,15 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import inspect
import logging.config
import os
import platform
import re
import subprocess
import importlib
import sys
import threading
import urllib
import uuid
from pathlib import Path
from types import SimpleNamespace
from typing import Union
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import yaml
from ultralytics.utils import LOGGER
from ultralytics import __version__
# Set modules in sys.modules under their old name
sys.modules['ultralytics.yolo.utils'] = importlib.import_module('ultralytics.utils')
# PyTorch Multi-GPU DDP Constants
RANK = int(os.getenv('RANK', -1))
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
# Other Constants
FILE = Path(__file__).resolve()
ROOT = FILE.parents[2] # YOLO
DEFAULT_CFG_PATH = ROOT / 'yolo/cfg/default.yaml'
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
AUTOINSTALL = str(os.getenv('YOLO_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
VERBOSE = str(os.getenv('YOLO_VERBOSE', True)).lower() == 'true' # global verbose mode
TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format
LOGGING_NAME = 'ultralytics'
MACOS, LINUX, WINDOWS = (platform.system() == x for x in ['Darwin', 'Linux', 'Windows']) # environment booleans
ARM64 = platform.machine() in ('arm64', 'aarch64') # ARM64 booleans
HELP_MSG = \
"""
Usage examples for running YOLOv8:
1. Install the ultralytics package:
pip install ultralytics
2. Use the Python SDK:
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.yaml') # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
results = model.train(data="coco128.yaml", epochs=3) # train the model
results = model.val() # evaluate model performance on the validation set
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
success = model.export(format='onnx') # export the model to ONNX format
3. Use the command line interface (CLI):
YOLOv8 'yolo' CLI commands use the following syntax:
yolo TASK MODE ARGS
Where TASK (optional) is one of [detect, segment, classify]
MODE (required) is one of [train, val, predict, export]
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
- Train a detection model for 10 epochs with an initial learning_rate of 0.01
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
- Predict a YouTube video using a pretrained segmentation model at image size 320:
yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320
- Val a pretrained detection model at batch-size 1 and image size 640:
yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
- Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
- Run special commands:
yolo help
yolo checks
yolo version
yolo settings
yolo copy-cfg
yolo cfg
Docs: https://docs.ultralytics.com
Community: https://community.ultralytics.com
GitHub: https://github.com/ultralytics/ultralytics
"""
# Settings
torch.set_printoptions(linewidth=320, precision=4, profile='default')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' # for deterministic training
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # suppress verbose TF compiler warnings in Colab
class SimpleClass:
"""
Ultralytics SimpleClass is a base class providing helpful string representation, error reporting, and attribute
access methods for easier debugging and usage.
"""
def __str__(self):
"""Return a human-readable string representation of the object."""
attr = []
for a in dir(self):
v = getattr(self, a)
if not callable(v) and not a.startswith('_'):
if isinstance(v, SimpleClass):
# Display only the module and class name for subclasses
s = f'{a}: {v.__module__}.{v.__class__.__name__} object'
else:
s = f'{a}: {repr(v)}'
attr.append(s)
return f'{self.__module__}.{self.__class__.__name__} object with attributes:\n\n' + '\n'.join(attr)
def __repr__(self):
"""Return a machine-readable string representation of the object."""
return self.__str__()
def __getattr__(self, attr):
"""Custom attribute access error message with helpful information."""
name = self.__class__.__name__
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
class IterableSimpleNamespace(SimpleNamespace):
"""
Ultralytics IterableSimpleNamespace is an extension class of SimpleNamespace that adds iterable functionality and
enables usage with dict() and for loops.
"""
def __iter__(self):
"""Return an iterator of key-value pairs from the namespace's attributes."""
return iter(vars(self).items())
def __str__(self):
"""Return a human-readable string representation of the object."""
return '\n'.join(f'{k}={v}' for k, v in vars(self).items())
def __getattr__(self, attr):
"""Custom attribute access error message with helpful information."""
name = self.__class__.__name__
raise AttributeError(f"""
'{name}' object has no attribute '{attr}'. This may be caused by a modified or out of date ultralytics
'default.yaml' file.\nPlease update your code with 'pip install -U ultralytics' and if necessary replace
{DEFAULT_CFG_PATH} with the latest version from
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cfg/default.yaml
""")
def get(self, key, default=None):
"""Return the value of the specified key if it exists; otherwise, return the default value."""
return getattr(self, key, default)
def plt_settings(rcparams=None, backend='Agg'):
"""
Decorator to temporarily set rc parameters and the backend for a plotting function.
Usage:
decorator: @plt_settings({"font.size": 12})
context manager: with plt_settings({"font.size": 12}):
Args:
rcparams (dict): Dictionary of rc parameters to set.
backend (str, optional): Name of the backend to use. Defaults to 'Agg'.
Returns:
(Callable): Decorated function with temporarily set rc parameters and backend. This decorator can be
applied to any function that needs to have specific matplotlib rc parameters and backend for its execution.
"""
if rcparams is None:
rcparams = {'font.size': 11}
def decorator(func):
"""Decorator to apply temporary rc parameters and backend to a function."""
def wrapper(*args, **kwargs):
"""Sets rc parameters and backend, calls the original function, and restores the settings."""
original_backend = plt.get_backend()
plt.switch_backend(backend)
with plt.rc_context(rcparams):
result = func(*args, **kwargs)
plt.switch_backend(original_backend)
return result
return wrapper
return decorator
def set_logging(name=LOGGING_NAME, verbose=True):
"""Sets up logging for the given name."""
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
logging.config.dictConfig({
'version': 1,
'disable_existing_loggers': False,
'formatters': {
name: {
'format': '%(message)s'}},
'handlers': {
name: {
'class': 'logging.StreamHandler',
'formatter': name,
'level': level}},
'loggers': {
name: {
'level': level,
'handlers': [name],
'propagate': False}}})
def emojis(string=''):
"""Return platform-dependent emoji-safe version of string."""
return string.encode().decode('ascii', 'ignore') if WINDOWS else string
class EmojiFilter(logging.Filter):
"""
A custom logging filter class for removing emojis in log messages.
This filter is particularly useful for ensuring compatibility with Windows terminals
that may not support the display of emojis in log messages.
"""
def filter(self, record):
"""Filter logs by emoji unicode characters on windows."""
record.msg = emojis(record.msg)
return super().filter(record)
# Set logger
set_logging(LOGGING_NAME, verbose=VERBOSE) # run before defining LOGGER
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
if WINDOWS: # emoji-safe logging
LOGGER.addFilter(EmojiFilter())
class ThreadingLocked:
"""
A decorator class for ensuring thread-safe execution of a function or method.
This class can be used as a decorator to make sure that if the decorated function
is called from multiple threads, only one thread at a time will be able to execute the function.
Attributes:
lock (threading.Lock): A lock object used to manage access to the decorated function.
Usage:
@ThreadingLocked()
def my_function():
# Your code here
pass
"""
def __init__(self):
self.lock = threading.Lock()
def __call__(self, f):
from functools import wraps
@wraps(f)
def decorated(*args, **kwargs):
with self.lock:
return f(*args, **kwargs)
return decorated
def yaml_save(file='data.yaml', data=None):
"""
Save YAML data to a file.
Args:
file (str, optional): File name. Default is 'data.yaml'.
data (dict): Data to save in YAML format.
Returns:
(None): Data is saved to the specified file.
"""
if data is None:
data = {}
file = Path(file)
if not file.parent.exists():
# Create parent directories if they don't exist
file.parent.mkdir(parents=True, exist_ok=True)
# Convert Path objects to strings
for k, v in data.items():
if isinstance(v, Path):
data[k] = str(v)
# Dump data to file in YAML format
with open(file, 'w') as f:
yaml.safe_dump(data, f, sort_keys=False, allow_unicode=True)
def yaml_load(file='data.yaml', append_filename=False):
"""
Load YAML data from a file.
Args:
file (str, optional): File name. Default is 'data.yaml'.
append_filename (bool): Add the YAML filename to the YAML dictionary. Default is False.
Returns:
(dict): YAML data and file name.
"""
with open(file, errors='ignore', encoding='utf-8') as f:
s = f.read() # string
# Remove special characters
if not s.isprintable():
s = re.sub(r'[^\x09\x0A\x0D\x20-\x7E\x85\xA0-\uD7FF\uE000-\uFFFD\U00010000-\U0010ffff]+', '', s)
# Add YAML filename to dict and return
return {**yaml.safe_load(s), 'yaml_file': str(file)} if append_filename else yaml.safe_load(s)
def yaml_print(yaml_file: Union[str, Path, dict]) -> None:
"""
Pretty prints a yaml file or a yaml-formatted dictionary.
Args:
yaml_file: The file path of the yaml file or a yaml-formatted dictionary.
Returns:
None
"""
yaml_dict = yaml_load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file
dump = yaml.dump(yaml_dict, sort_keys=False, allow_unicode=True)
LOGGER.info(f"Printing '{colorstr('bold', 'black', yaml_file)}'\n\n{dump}")
# Default configuration
DEFAULT_CFG_DICT = yaml_load(DEFAULT_CFG_PATH)
for k, v in DEFAULT_CFG_DICT.items():
if isinstance(v, str) and v.lower() == 'none':
DEFAULT_CFG_DICT[k] = None
DEFAULT_CFG_KEYS = DEFAULT_CFG_DICT.keys()
DEFAULT_CFG = IterableSimpleNamespace(**DEFAULT_CFG_DICT)
def is_colab():
"""
Check if the current script is running inside a Google Colab notebook.
Returns:
(bool): True if running inside a Colab notebook, False otherwise.
"""
return 'COLAB_RELEASE_TAG' in os.environ or 'COLAB_BACKEND_VERSION' in os.environ
def is_kaggle():
"""
Check if the current script is running inside a Kaggle kernel.
Returns:
(bool): True if running inside a Kaggle kernel, False otherwise.
"""
return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
def is_jupyter():
"""
Check if the current script is running inside a Jupyter Notebook.
Verified on Colab, Jupyterlab, Kaggle, Paperspace.
Returns:
(bool): True if running inside a Jupyter Notebook, False otherwise.
"""
with contextlib.suppress(Exception):
from IPython import get_ipython
return get_ipython() is not None
return False
def is_docker() -> bool:
"""
Determine if the script is running inside a Docker container.
Returns:
(bool): True if the script is running inside a Docker container, False otherwise.
"""
file = Path('/proc/self/cgroup')
if file.exists():
with open(file) as f:
return 'docker' in f.read()
else:
return False
def is_online() -> bool:
"""
Check internet connectivity by attempting to connect to a known online host.
Returns:
(bool): True if connection is successful, False otherwise.
"""
import socket
for host in '1.1.1.1', '8.8.8.8', '223.5.5.5': # Cloudflare, Google, AliDNS:
try:
test_connection = socket.create_connection(address=(host, 53), timeout=2)
except (socket.timeout, socket.gaierror, OSError):
continue
else:
# If the connection was successful, close it to avoid a ResourceWarning
test_connection.close()
return True
return False
ONLINE = is_online()
def is_pip_package(filepath: str = __name__) -> bool:
"""
Determines if the file at the given filepath is part of a pip package.
Args:
filepath (str): The filepath to check.
Returns:
(bool): True if the file is part of a pip package, False otherwise.
"""
import importlib.util
# Get the spec for the module
spec = importlib.util.find_spec(filepath)
# Return whether the spec is not None and the origin is not None (indicating it is a package)
return spec is not None and spec.origin is not None
def is_dir_writeable(dir_path: Union[str, Path]) -> bool:
"""
Check if a directory is writeable.
Args:
dir_path (str | Path): The path to the directory.
Returns:
(bool): True if the directory is writeable, False otherwise.
"""
return os.access(str(dir_path), os.W_OK)
def is_pytest_running():
"""
Determines whether pytest is currently running or not.
Returns:
(bool): True if pytest is running, False otherwise.
"""
return ('PYTEST_CURRENT_TEST' in os.environ) or ('pytest' in sys.modules) or ('pytest' in Path(sys.argv[0]).stem)
def is_github_actions_ci() -> bool:
"""
Determine if the current environment is a GitHub Actions CI Python runner.
Returns:
(bool): True if the current environment is a GitHub Actions CI Python runner, False otherwise.
"""
return 'GITHUB_ACTIONS' in os.environ and 'RUNNER_OS' in os.environ and 'RUNNER_TOOL_CACHE' in os.environ
def is_git_dir():
"""
Determines whether the current file is part of a git repository.
If the current file is not part of a git repository, returns None.
Returns:
(bool): True if current file is part of a git repository.
"""
return get_git_dir() is not None
def get_git_dir():
"""
Determines whether the current file is part of a git repository and if so, returns the repository root directory.
If the current file is not part of a git repository, returns None.
Returns:
(Path | None): Git root directory if found or None if not found.
"""
for d in Path(__file__).parents:
if (d / '.git').is_dir():
return d
return None # no .git dir found
def get_git_origin_url():
"""
Retrieves the origin URL of a git repository.
Returns:
(str | None): The origin URL of the git repository.
"""
if is_git_dir():
with contextlib.suppress(subprocess.CalledProcessError):
origin = subprocess.check_output(['git', 'config', '--get', 'remote.origin.url'])
return origin.decode().strip()
return None # if not git dir or on error
def get_git_branch():
"""
Returns the current git branch name. If not in a git repository, returns None.
Returns:
(str | None): The current git branch name.
"""
if is_git_dir():
with contextlib.suppress(subprocess.CalledProcessError):
origin = subprocess.check_output(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
return origin.decode().strip()
return None # if not git dir or on error
def get_default_args(func):
"""Returns a dictionary of default arguments for a function.
Args:
func (callable): The function to inspect.
Returns:
(dict): A dictionary where each key is a parameter name, and each value is the default value of that parameter.
"""
signature = inspect.signature(func)
return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}
def get_user_config_dir(sub_dir='Ultralytics'):
"""
Get the user config directory.
Args:
sub_dir (str): The name of the subdirectory to create.
Returns:
(Path): The path to the user config directory.
"""
# Return the appropriate config directory for each operating system
if WINDOWS:
path = Path.home() / 'AppData' / 'Roaming' / sub_dir
elif MACOS: # macOS
path = Path.home() / 'Library' / 'Application Support' / sub_dir
elif LINUX:
path = Path.home() / '.config' / sub_dir
else:
raise ValueError(f'Unsupported operating system: {platform.system()}')
# GCP and AWS lambda fix, only /tmp is writeable
if not is_dir_writeable(str(path.parent)):
path = Path('/tmp') / sub_dir
LOGGER.warning(f"WARNING ⚠️ user config directory is not writeable, defaulting to '{path}'.")
# Create the subdirectory if it does not exist
path.mkdir(parents=True, exist_ok=True)
return path
USER_CONFIG_DIR = Path(os.getenv('YOLO_CONFIG_DIR', get_user_config_dir())) # Ultralytics settings dir
SETTINGS_YAML = USER_CONFIG_DIR / 'settings.yaml'
def colorstr(*input):
"""Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')."""
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
colors = {
'black': '\033[30m', # basic colors
'red': '\033[31m',
'green': '\033[32m',
'yellow': '\033[33m',
'blue': '\033[34m',
'magenta': '\033[35m',
'cyan': '\033[36m',
'white': '\033[37m',
'bright_black': '\033[90m', # bright colors
'bright_red': '\033[91m',
'bright_green': '\033[92m',
'bright_yellow': '\033[93m',
'bright_blue': '\033[94m',
'bright_magenta': '\033[95m',
'bright_cyan': '\033[96m',
'bright_white': '\033[97m',
'end': '\033[0m', # misc
'bold': '\033[1m',
'underline': '\033[4m'}
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
class TryExcept(contextlib.ContextDecorator):
"""YOLOv8 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager."""
def __init__(self, msg='', verbose=True):
"""Initialize TryExcept class with optional message and verbosity settings."""
self.msg = msg
self.verbose = verbose
def __enter__(self):
"""Executes when entering TryExcept context, initializes instance."""
pass
def __exit__(self, exc_type, value, traceback):
"""Defines behavior when exiting a 'with' block, prints error message if necessary."""
if self.verbose and value:
print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
return True
def threaded(func):
"""Multi-threads a target function and returns thread. Usage: @threaded decorator."""
def wrapper(*args, **kwargs):
"""Multi-threads a given function and returns the thread."""
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
thread.start()
return thread
return wrapper
def set_sentry():
"""
Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and
sync=True in settings. Run 'yolo settings' to see and update settings YAML file.
Conditions required to send errors (ALL conditions must be met or no errors will be reported):
- sentry_sdk package is installed
- sync=True in YOLO settings
- pytest is not running
- running in a pip package installation
- running in a non-git directory
- running with rank -1 or 0
- online environment
- CLI used to run package (checked with 'yolo' as the name of the main CLI command)
The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError
exceptions and to exclude events with 'out of memory' in their exception message.
Additionally, the function sets custom tags and user information for Sentry events.
"""
def before_send(event, hint):
"""
Modify the event before sending it to Sentry based on specific exception types and messages.
Args:
event (dict): The event dictionary containing information about the error.
hint (dict): A dictionary containing additional information about the error.
Returns:
dict: The modified event or None if the event should not be sent to Sentry.
"""
if 'exc_info' in hint:
exc_type, exc_value, tb = hint['exc_info']
if exc_type in (KeyboardInterrupt, FileNotFoundError) \
or 'out of memory' in str(exc_value):
return None # do not send event
event['tags'] = {
'sys_argv': sys.argv[0],
'sys_argv_name': Path(sys.argv[0]).name,
'install': 'git' if is_git_dir() else 'pip' if is_pip_package() else 'other',
'os': ENVIRONMENT}
return event
if SETTINGS['sync'] and \
RANK in (-1, 0) and \
Path(sys.argv[0]).name == 'yolo' and \
not TESTS_RUNNING and \
ONLINE and \
is_pip_package() and \
not is_git_dir():
# If sentry_sdk package is not installed then return and do not use Sentry
try:
import sentry_sdk # noqa
except ImportError:
return
sentry_sdk.init(
dsn='https://5ff1556b71594bfea135ff0203a0d290@o4504521589325824.ingest.sentry.io/4504521592406016',
debug=False,
traces_sample_rate=1.0,
release=__version__,
environment='production', # 'dev' or 'production'
before_send=before_send,
ignore_errors=[KeyboardInterrupt, FileNotFoundError])
sentry_sdk.set_user({'id': SETTINGS['uuid']}) # SHA-256 anonymized UUID hash
# Disable all sentry logging
for logger in 'sentry_sdk', 'sentry_sdk.errors':
logging.getLogger(logger).setLevel(logging.CRITICAL)
def get_settings(file=SETTINGS_YAML, version='0.0.3'):
"""
Loads a global Ultralytics settings YAML file or creates one with default values if it does not exist.
Args:
file (Path): Path to the Ultralytics settings YAML file. Defaults to 'settings.yaml' in the USER_CONFIG_DIR.
version (str): Settings version. If min settings version not met, new default settings will be saved.
Returns:
(dict): Dictionary of settings key-value pairs.
"""
import hashlib
from ultralytics.yolo.utils.checks import check_version
from ultralytics.yolo.utils.torch_utils import torch_distributed_zero_first
git_dir = get_git_dir()
root = git_dir or Path()
datasets_root = (root.parent if git_dir and is_dir_writeable(root.parent) else root).resolve()
defaults = {
'datasets_dir': str(datasets_root / 'datasets'), # default datasets directory.
'weights_dir': str(root / 'weights'), # default weights directory.
'runs_dir': str(root / 'runs'), # default runs directory.
'uuid': hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(), # SHA-256 anonymized UUID hash
'sync': True, # sync analytics to help with YOLO development
'api_key': '', # Ultralytics HUB API key (https://hub.ultralytics.com/)
'settings_version': version} # Ultralytics settings version
with torch_distributed_zero_first(RANK):
if not file.exists():
yaml_save(file, defaults)
settings = yaml_load(file)
# Check that settings keys and types match defaults
correct = \
settings \
and settings.keys() == defaults.keys() \
and all(type(a) == type(b) for a, b in zip(settings.values(), defaults.values())) \
and check_version(settings['settings_version'], version)
if not correct:
LOGGER.warning('WARNING ⚠️ Ultralytics settings reset to defaults. This is normal and may be due to a '
'recent ultralytics package update, but may have overwritten previous settings. '
f"\nView and update settings with 'yolo settings' or at '{file}'")
settings = defaults # merge **defaults with **settings (prefer **settings)
yaml_save(file, settings) # save updated defaults
return settings
def set_settings(kwargs, file=SETTINGS_YAML):
"""
Function that runs on a first-time ultralytics package installation to set up global settings and create necessary
directories.
"""
SETTINGS.update(kwargs)
yaml_save(file, SETTINGS)
def deprecation_warn(arg, new_arg, version=None):
"""Issue a deprecation warning when a deprecated argument is used, suggesting an updated argument."""
if not version:
version = float(__version__[:3]) + 0.2 # deprecate after 2nd major release
LOGGER.warning(f"WARNING ⚠️ '{arg}' is deprecated and will be removed in 'ultralytics {version}' in the future. "
f"Please use '{new_arg}' instead.")
def clean_url(url):
"""Strip auth from URL, i.e. https://url.com/file.txt?auth -> https://url.com/file.txt."""
url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/
return urllib.parse.unquote(url).split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth
def url2file(url):
"""Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt."""
return Path(clean_url(url)).name
# Run below code on yolo/utils init ------------------------------------------------------------------------------------
# Check first-install steps
PREFIX = colorstr('Ultralytics: ')
SETTINGS = get_settings()
DATASETS_DIR = Path(SETTINGS['datasets_dir']) # global datasets directory
ENVIRONMENT = 'Colab' if is_colab() else 'Kaggle' if is_kaggle() else 'Jupyter' if is_jupyter() else \
'Docker' if is_docker() else platform.system()
TESTS_RUNNING = is_pytest_running() or is_github_actions_ci()
set_sentry()
# Apply monkey patches if the script is being run from within the parent directory of the script's location
from .patches import imread, imshow, imwrite
# torch.save = torch_save
if Path(inspect.stack()[0].filename).parent.parent.as_posix() in inspect.stack()[-1].filename:
cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow
UTILS_WARNING = """WARNING ⚠️ 'ultralytics.yolo.utils' is deprecated since '8.0.136' and will be removed in '8.1.0'. Please use 'ultralytics.utils' instead.
Note this warning may be related to loading older models. You can update your model to current structure with:
import torch
ckpt = torch.load("model.pt") # applies to both official and custom models
torch.save(ckpt, "updated-model.pt")
"""
LOGGER.warning(UTILS_WARNING)

View File

@ -1,90 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Functions for estimating the best YOLO batch size to use a fraction of the available CUDA memory in PyTorch.
"""
from copy import deepcopy
import numpy as np
import torch
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, colorstr
from ultralytics.yolo.utils.torch_utils import profile
def check_train_batch_size(model, imgsz=640, amp=True):
"""
Check YOLO training batch size using the autobatch() function.
Args:
model (torch.nn.Module): YOLO model to check batch size for.
imgsz (int): Image size used for training.
amp (bool): If True, use automatic mixed precision (AMP) for training.
Returns:
(int): Optimal batch size computed using the autobatch() function.
"""
with torch.cuda.amp.autocast(amp):
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
def autobatch(model, imgsz=640, fraction=0.67, batch_size=DEFAULT_CFG.batch):
"""
Automatically estimate the best YOLO batch size to use a fraction of the available CUDA memory.
Args:
model (torch.nn.module): YOLO model to compute batch size for.
imgsz (int, optional): The image size used as input for the YOLO model. Defaults to 640.
fraction (float, optional): The fraction of available CUDA memory to use. Defaults to 0.67.
batch_size (int, optional): The default batch size to use if an error is detected. Defaults to 16.
Returns:
(int): The optimal batch size.
"""
# Check device
prefix = colorstr('AutoBatch: ')
LOGGER.info(f'{prefix}Computing optimal batch size for imgsz={imgsz}')
device = next(model.parameters()).device # get model device
if device.type == 'cpu':
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
return batch_size
if torch.backends.cudnn.benchmark:
LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}')
return batch_size
# Inspect CUDA memory
gb = 1 << 30 # bytes to GiB (1024 ** 3)
d = str(device).upper() # 'CUDA:0'
properties = torch.cuda.get_device_properties(device) # device properties
t = properties.total_memory / gb # GiB total
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
f = t - (r + a) # GiB free
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
# Profile batch sizes
batch_sizes = [1, 2, 4, 8, 16]
try:
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
results = profile(img, model, n=3, device=device)
# Fit a solution
y = [x[2] for x in results if x] # memory [2]
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
if None in results: # some sizes failed
i = results.index(None) # first fail index
if b >= batch_sizes[i]: # y intercept above failure point
b = batch_sizes[max(i - 1, 0)] # select prior safe point
if b < 1 or b > 1024: # b outside of safe range
b = batch_size
LOGGER.info(f'{prefix}WARNING ⚠️ CUDA anomaly detected, using default batch-size {batch_size}.')
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
return b
except Exception as e:
LOGGER.warning(f'{prefix}WARNING ⚠️ error detected: {e}, using default batch-size {batch_size}.')
return batch_size

View File

@ -1,358 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Benchmark a YOLO model formats for speed and accuracy
Usage:
from ultralytics.yolo.utils.benchmarks import ProfileModels, benchmark
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile()
run_benchmarks(model='yolov8n.pt', imgsz=160)
Format | `format=argument` | Model
--- | --- | ---
PyTorch | - | yolov8n.pt
TorchScript | `torchscript` | yolov8n.torchscript
ONNX | `onnx` | yolov8n.onnx
OpenVINO | `openvino` | yolov8n_openvino_model/
TensorRT | `engine` | yolov8n.engine
CoreML | `coreml` | yolov8n.mlmodel
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/
TensorFlow GraphDef | `pb` | yolov8n.pb
TensorFlow Lite | `tflite` | yolov8n.tflite
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov8n_web_model/
PaddlePaddle | `paddle` | yolov8n_paddle_model/
ncnn | `ncnn` | yolov8n_ncnn_model/
"""
import glob
import platform
import time
from pathlib import Path
import numpy as np
import torch.cuda
from tqdm import tqdm
from ultralytics import YOLO
from ultralytics.yolo.cfg import TASK2DATA, TASK2METRIC
from ultralytics.yolo.engine.exporter import export_formats
from ultralytics.yolo.utils import LINUX, LOGGER, MACOS, ROOT, SETTINGS
from ultralytics.yolo.utils.checks import check_requirements, check_yolo
from ultralytics.yolo.utils.downloads import download
from ultralytics.yolo.utils.files import file_size
from ultralytics.yolo.utils.torch_utils import select_device
def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
imgsz=160,
half=False,
int8=False,
device='cpu',
hard_fail=False):
"""
Benchmark a YOLO model across different formats for speed and accuracy.
Args:
model (str | Path | optional): Path to the model file or directory. Default is
Path(SETTINGS['weights_dir']) / 'yolov8n.pt'.
imgsz (int, optional): Image size for the benchmark. Default is 160.
half (bool, optional): Use half-precision for the model if True. Default is False.
int8 (bool, optional): Use int8-precision for the model if True. Default is False.
device (str, optional): Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'.
hard_fail (bool | float | optional): If True or a float, assert benchmarks pass with given metric.
Default is False.
Returns:
df (pandas.DataFrame): A pandas DataFrame with benchmark results for each format, including file size,
metric, and inference time.
"""
import pandas as pd
pd.options.display.max_columns = 10
pd.options.display.width = 120
device = select_device(device, verbose=False)
if isinstance(model, (str, Path)):
model = YOLO(model)
y = []
t0 = time.time()
for i, (name, format, suffix, cpu, gpu) in export_formats().iterrows(): # index, (name, format, suffix, CPU, GPU)
emoji, filename = '', None # export defaults
try:
assert i != 9 or LINUX, 'Edge TPU export only supported on Linux'
if i == 10:
assert MACOS or LINUX, 'TF.js export only supported on macOS and Linux'
if 'cpu' in device.type:
assert cpu, 'inference not supported on CPU'
if 'cuda' in device.type:
assert gpu, 'inference not supported on GPU'
# Export
if format == '-':
filename = model.ckpt_path or model.cfg
export = model # PyTorch format
else:
filename = model.export(imgsz=imgsz, format=format, half=half, int8=int8, device=device, verbose=False)
export = YOLO(filename, task=model.task)
assert suffix in str(filename), 'export failed'
emoji = '' # indicates export succeeded
# Predict
assert model.task != 'pose' or i != 7, 'GraphDef Pose inference is not supported'
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
if not (ROOT / 'assets/bus.jpg').exists():
download(url='https://ultralytics.com/images/bus.jpg', dir=ROOT / 'assets')
export.predict(ROOT / 'assets/bus.jpg', imgsz=imgsz, device=device, half=half)
# Validate
data = TASK2DATA[model.task] # task to dataset, i.e. coco8.yaml for task=detect
key = TASK2METRIC[model.task] # task to metric, i.e. metrics/mAP50-95(B) for task=detect
results = export.val(data=data,
batch=1,
imgsz=imgsz,
plots=False,
device=device,
half=half,
int8=int8,
verbose=False)
metric, speed = results.results_dict[key], results.speed['inference']
y.append([name, '', round(file_size(filename), 1), round(metric, 4), round(speed, 2)])
except Exception as e:
if hard_fail:
assert type(e) is AssertionError, f'Benchmark hard_fail for {name}: {e}'
LOGGER.warning(f'ERROR ❌️ Benchmark failure for {name}: {e}')
y.append([name, emoji, round(file_size(filename), 1), None, None]) # mAP, t_inference
# Print results
check_yolo(device=device) # print system info
df = pd.DataFrame(y, columns=['Format', 'Status❔', 'Size (MB)', key, 'Inference time (ms/im)'])
name = Path(model.ckpt_path).name
s = f'\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n'
LOGGER.info(s)
with open('benchmarks.log', 'a', errors='ignore', encoding='utf-8') as f:
f.write(s)
if hard_fail and isinstance(hard_fail, float):
metrics = df[key].array # values to compare to floor
floor = hard_fail # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: one or more metric(s) < floor {floor}'
return df
class ProfileModels:
"""
ProfileModels class for profiling different models on ONNX and TensorRT.
This class profiles the performance of different models, provided their paths. The profiling includes parameters such as
model speed and FLOPs.
Attributes:
paths (list): Paths of the models to profile.
num_timed_runs (int): Number of timed runs for the profiling. Default is 100.
num_warmup_runs (int): Number of warmup runs before profiling. Default is 10.
min_time (float): Minimum number of seconds to profile for. Default is 60.
imgsz (int): Image size used in the models. Default is 640.
Methods:
profile(): Profiles the models and prints the result.
"""
def __init__(self,
paths: list,
num_timed_runs=100,
num_warmup_runs=10,
min_time=60,
imgsz=640,
trt=True,
device=None):
self.paths = paths
self.num_timed_runs = num_timed_runs
self.num_warmup_runs = num_warmup_runs
self.min_time = min_time
self.imgsz = imgsz
self.trt = trt # run TensorRT profiling
self.device = device or torch.device(0 if torch.cuda.is_available() else 'cpu')
def profile(self):
files = self.get_files()
if not files:
print('No matching *.pt or *.onnx files found.')
return
table_rows = []
output = []
for file in files:
engine_file = file.with_suffix('.engine')
if file.suffix in ('.pt', '.yaml'):
model = YOLO(str(file))
model.fuse() # to report correct params and GFLOPs in model.info()
model_info = model.info()
if self.trt and self.device.type != 'cpu' and not engine_file.is_file():
engine_file = model.export(format='engine',
half=True,
imgsz=self.imgsz,
device=self.device,
verbose=False)
onnx_file = model.export(format='onnx',
half=True,
imgsz=self.imgsz,
simplify=True,
device=self.device,
verbose=False)
elif file.suffix == '.onnx':
model_info = self.get_onnx_model_info(file)
onnx_file = file
else:
continue
t_engine = self.profile_tensorrt_model(str(engine_file))
t_onnx = self.profile_onnx_model(str(onnx_file))
table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info))
output.append(self.generate_results_dict(file.stem, t_onnx, t_engine, model_info))
self.print_table(table_rows)
return output
def get_files(self):
files = []
for path in self.paths:
path = Path(path)
if path.is_dir():
extensions = ['*.pt', '*.onnx', '*.yaml']
files.extend([file for ext in extensions for file in glob.glob(str(path / ext))])
elif path.suffix in {'.pt', '.yaml'}: # add non-existing
files.append(str(path))
else:
files.extend(glob.glob(str(path)))
print(f'Profiling: {sorted(files)}')
return [Path(file) for file in sorted(files)]
def get_onnx_model_info(self, onnx_file: str):
# return (num_layers, num_params, num_gradients, num_flops)
return 0.0, 0.0, 0.0, 0.0
def iterative_sigma_clipping(self, data, sigma=2, max_iters=3):
data = np.array(data)
for _ in range(max_iters):
mean, std = np.mean(data), np.std(data)
clipped_data = data[(data > mean - sigma * std) & (data < mean + sigma * std)]
if len(clipped_data) == len(data):
break
data = clipped_data
return data
def profile_tensorrt_model(self, engine_file: str):
if not self.trt or not Path(engine_file).is_file():
return 0.0, 0.0
# Model and input
model = YOLO(engine_file)
input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32) # must be FP32
# Warmup runs
elapsed = 0.0
for _ in range(3):
start_time = time.time()
for _ in range(self.num_warmup_runs):
model(input_data, imgsz=self.imgsz, verbose=False)
elapsed = time.time() - start_time
# Compute number of runs as higher of min_time or num_timed_runs
num_runs = max(round(self.min_time / elapsed * self.num_warmup_runs), self.num_timed_runs * 50)
# Timed runs
run_times = []
for _ in tqdm(range(num_runs), desc=engine_file):
results = model(input_data, imgsz=self.imgsz, verbose=False)
run_times.append(results[0].speed['inference']) # Convert to milliseconds
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping
return np.mean(run_times), np.std(run_times)
def profile_onnx_model(self, onnx_file: str):
check_requirements('onnxruntime')
import onnxruntime as ort
# Session with either 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
sess_options.intra_op_num_threads = 8 # Limit the number of threads
sess = ort.InferenceSession(onnx_file, sess_options, providers=['CPUExecutionProvider'])
input_tensor = sess.get_inputs()[0]
input_type = input_tensor.type
# Mapping ONNX datatype to numpy datatype
if 'float16' in input_type:
input_dtype = np.float16
elif 'float' in input_type:
input_dtype = np.float32
elif 'double' in input_type:
input_dtype = np.float64
elif 'int64' in input_type:
input_dtype = np.int64
elif 'int32' in input_type:
input_dtype = np.int32
else:
raise ValueError(f'Unsupported ONNX datatype {input_type}')
input_data = np.random.rand(*input_tensor.shape).astype(input_dtype)
input_name = input_tensor.name
output_name = sess.get_outputs()[0].name
# Warmup runs
elapsed = 0.0
for _ in range(3):
start_time = time.time()
for _ in range(self.num_warmup_runs):
sess.run([output_name], {input_name: input_data})
elapsed = time.time() - start_time
# Compute number of runs as higher of min_time or num_timed_runs
num_runs = max(round(self.min_time / elapsed * self.num_warmup_runs), self.num_timed_runs)
# Timed runs
run_times = []
for _ in tqdm(range(num_runs), desc=onnx_file):
start_time = time.time()
sess.run([output_name], {input_name: input_data})
run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=5) # sigma clipping
return np.mean(run_times), np.std(run_times)
def generate_table_row(self, model_name, t_onnx, t_engine, model_info):
layers, params, gradients, flops = model_info
return f'| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± {t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |'
def generate_results_dict(self, model_name, t_onnx, t_engine, model_info):
layers, params, gradients, flops = model_info
return {
'model/name': model_name,
'model/parameters': params,
'model/GFLOPs': round(flops, 3),
'model/speed_ONNX(ms)': round(t_onnx[0], 3),
'model/speed_TensorRT(ms)': round(t_engine[0], 3)}
def print_table(self, table_rows):
gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'GPU'
header = f'| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>{gpu} TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |'
separator = '|-------------|---------------------|--------------------|------------------------------|-----------------------------------|------------------|-----------------|'
print(f'\n\n{header}')
print(separator)
for row in table_rows:
print(row)
if __name__ == '__main__':
# Benchmark all export formats
benchmark()
# Profiling models on ONNX and TensorRT
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml'])

View File

@ -1,5 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from .base import add_integration_callbacks, default_callbacks, get_default_callbacks
__all__ = 'add_integration_callbacks', 'default_callbacks', 'get_default_callbacks'

View File

@ -1,212 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Base callbacks
"""
from collections import defaultdict
from copy import deepcopy
# Trainer callbacks ----------------------------------------------------------------------------------------------------
def on_pretrain_routine_start(trainer):
"""Called before the pretraining routine starts."""
pass
def on_pretrain_routine_end(trainer):
"""Called after the pretraining routine ends."""
pass
def on_train_start(trainer):
"""Called when the training starts."""
pass
def on_train_epoch_start(trainer):
"""Called at the start of each training epoch."""
pass
def on_train_batch_start(trainer):
"""Called at the start of each training batch."""
pass
def optimizer_step(trainer):
"""Called when the optimizer takes a step."""
pass
def on_before_zero_grad(trainer):
"""Called before the gradients are set to zero."""
pass
def on_train_batch_end(trainer):
"""Called at the end of each training batch."""
pass
def on_train_epoch_end(trainer):
"""Called at the end of each training epoch."""
pass
def on_fit_epoch_end(trainer):
"""Called at the end of each fit epoch (train + val)."""
pass
def on_model_save(trainer):
"""Called when the model is saved."""
pass
def on_train_end(trainer):
"""Called when the training ends."""
pass
def on_params_update(trainer):
"""Called when the model parameters are updated."""
pass
def teardown(trainer):
"""Called during the teardown of the training process."""
pass
# Validator callbacks --------------------------------------------------------------------------------------------------
def on_val_start(validator):
"""Called when the validation starts."""
pass
def on_val_batch_start(validator):
"""Called at the start of each validation batch."""
pass
def on_val_batch_end(validator):
"""Called at the end of each validation batch."""
pass
def on_val_end(validator):
"""Called when the validation ends."""
pass
# Predictor callbacks --------------------------------------------------------------------------------------------------
def on_predict_start(predictor):
"""Called when the prediction starts."""
pass
def on_predict_batch_start(predictor):
"""Called at the start of each prediction batch."""
pass
def on_predict_batch_end(predictor):
"""Called at the end of each prediction batch."""
pass
def on_predict_postprocess_end(predictor):
"""Called after the post-processing of the prediction ends."""
pass
def on_predict_end(predictor):
"""Called when the prediction ends."""
pass
# Exporter callbacks ---------------------------------------------------------------------------------------------------
def on_export_start(exporter):
"""Called when the model export starts."""
pass
def on_export_end(exporter):
"""Called when the model export ends."""
pass
default_callbacks = {
# Run in trainer
'on_pretrain_routine_start': [on_pretrain_routine_start],
'on_pretrain_routine_end': [on_pretrain_routine_end],
'on_train_start': [on_train_start],
'on_train_epoch_start': [on_train_epoch_start],
'on_train_batch_start': [on_train_batch_start],
'optimizer_step': [optimizer_step],
'on_before_zero_grad': [on_before_zero_grad],
'on_train_batch_end': [on_train_batch_end],
'on_train_epoch_end': [on_train_epoch_end],
'on_fit_epoch_end': [on_fit_epoch_end], # fit = train + val
'on_model_save': [on_model_save],
'on_train_end': [on_train_end],
'on_params_update': [on_params_update],
'teardown': [teardown],
# Run in validator
'on_val_start': [on_val_start],
'on_val_batch_start': [on_val_batch_start],
'on_val_batch_end': [on_val_batch_end],
'on_val_end': [on_val_end],
# Run in predictor
'on_predict_start': [on_predict_start],
'on_predict_batch_start': [on_predict_batch_start],
'on_predict_postprocess_end': [on_predict_postprocess_end],
'on_predict_batch_end': [on_predict_batch_end],
'on_predict_end': [on_predict_end],
# Run in exporter
'on_export_start': [on_export_start],
'on_export_end': [on_export_end]}
def get_default_callbacks():
"""
Return a copy of the default_callbacks dictionary with lists as default values.
Returns:
(defaultdict): A defaultdict with keys from default_callbacks and empty lists as default values.
"""
return defaultdict(list, deepcopy(default_callbacks))
def add_integration_callbacks(instance):
"""
Add integration callbacks from various sources to the instance's callbacks.
Args:
instance (Trainer, Predictor, Validator, Exporter): An object with a 'callbacks' attribute that is a dictionary
of callback lists.
"""
from .clearml import callbacks as clearml_cb
from .comet import callbacks as comet_cb
from .dvc import callbacks as dvc_cb
from .hub import callbacks as hub_cb
from .mlflow import callbacks as mlflow_cb
from .neptune import callbacks as neptune_cb
from .raytune import callbacks as tune_cb
from .tensorboard import callbacks as tensorboard_cb
from .wb import callbacks as wb_cb
for x in clearml_cb, comet_cb, hub_cb, mlflow_cb, neptune_cb, tune_cb, tensorboard_cb, wb_cb, dvc_cb:
for k, v in x.items():
if v not in instance.callbacks[k]: # prevent duplicate callbacks addition
instance.callbacks[k].append(v) # callback[name].append(func)

View File

@ -1,143 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import re
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
try:
import clearml
from clearml import Task
from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO
from clearml.binding.matplotlib_bind import PatchedMatplotlib
assert hasattr(clearml, '__version__') # verify package is not directory
assert not TESTS_RUNNING # do not log pytest
except (ImportError, AssertionError):
clearml = None
def _log_debug_samples(files, title='Debug Samples') -> None:
"""
Log files (images) as debug samples in the ClearML task.
Args:
files (list): A list of file paths in PosixPath format.
title (str): A title that groups together images with the same values.
"""
task = Task.current_task()
if task:
for f in files:
if f.exists():
it = re.search(r'_batch(\d+)', f.name)
iteration = int(it.groups()[0]) if it else 0
task.get_logger().report_image(title=title,
series=f.name.replace(it.group(), ''),
local_path=str(f),
iteration=iteration)
def _log_plot(title, plot_path) -> None:
"""
Log an image as a plot in the plot section of ClearML.
Args:
title (str): The title of the plot.
plot_path (str): The path to the saved image file.
"""
img = mpimg.imread(plot_path)
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks
ax.imshow(img)
Task.current_task().get_logger().report_matplotlib_figure(title=title,
series='',
figure=fig,
report_interactive=False)
def on_pretrain_routine_start(trainer):
"""Runs at start of pretraining routine; initializes and connects/ logs task to ClearML."""
try:
task = Task.current_task()
if task:
# Make sure the automatic pytorch and matplotlib bindings are disabled!
# We are logging these plots and model files manually in the integration
PatchPyTorchModelIO.update_current_task(None)
PatchedMatplotlib.update_current_task(None)
else:
task = Task.init(project_name=trainer.args.project or 'YOLOv8',
task_name=trainer.args.name,
tags=['YOLOv8'],
output_uri=True,
reuse_last_task_id=False,
auto_connect_frameworks={
'pytorch': False,
'matplotlib': False})
LOGGER.warning('ClearML Initialized a new task. If you want to run remotely, '
'please add clearml-init and connect your arguments before initializing YOLO.')
task.connect(vars(trainer.args), name='General')
except Exception as e:
LOGGER.warning(f'WARNING ⚠️ ClearML installed but not initialized correctly, not logging this run. {e}')
def on_train_epoch_end(trainer):
task = Task.current_task()
if task:
"""Logs debug samples for the first epoch of YOLO training."""
if trainer.epoch == 1:
_log_debug_samples(sorted(trainer.save_dir.glob('train_batch*.jpg')), 'Mosaic')
"""Report the current training progress."""
for k, v in trainer.validator.metrics.results_dict.items():
task.get_logger().report_scalar('train', k, v, iteration=trainer.epoch)
def on_fit_epoch_end(trainer):
"""Reports model information to logger at the end of an epoch."""
task = Task.current_task()
if task:
# You should have access to the validation bboxes under jdict
task.get_logger().report_scalar(title='Epoch Time',
series='Epoch Time',
value=trainer.epoch_time,
iteration=trainer.epoch)
if trainer.epoch == 0:
for k, v in model_info_for_loggers(trainer).items():
task.get_logger().report_single_value(k, v)
def on_val_end(validator):
"""Logs validation results including labels and predictions."""
if Task.current_task():
# Log val_labels and val_pred
_log_debug_samples(sorted(validator.save_dir.glob('val*.jpg')), 'Validation')
def on_train_end(trainer):
"""Logs final model and its name on training completion."""
task = Task.current_task()
if task:
# Log final results, CM matrix + PR plots
files = [
'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png',
*(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter
for f in files:
_log_plot(title=f.stem, plot_path=f)
# Report final metrics
for k, v in trainer.validator.metrics.results_dict.items():
task.get_logger().report_single_value(k, v)
# Log the final model
task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False)
callbacks = {
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_train_epoch_end': on_train_epoch_end,
'on_fit_epoch_end': on_fit_epoch_end,
'on_val_end': on_val_end,
'on_train_end': on_train_end} if clearml else {}

View File

@ -1,368 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import os
from pathlib import Path
from ultralytics.yolo.utils import LOGGER, RANK, TESTS_RUNNING, ops
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
try:
import comet_ml
assert not TESTS_RUNNING # do not log pytest
assert hasattr(comet_ml, '__version__') # verify package is not directory
except (ImportError, AssertionError):
comet_ml = None
# Ensures certain logging functions only run for supported tasks
COMET_SUPPORTED_TASKS = ['detect']
# Names of plots created by YOLOv8 that are logged to Comet
EVALUATION_PLOT_NAMES = 'F1_curve', 'P_curve', 'R_curve', 'PR_curve', 'confusion_matrix'
LABEL_PLOT_NAMES = 'labels', 'labels_correlogram'
_comet_image_prediction_count = 0
def _get_comet_mode():
return os.getenv('COMET_MODE', 'online')
def _get_comet_model_name():
return os.getenv('COMET_MODEL_NAME', 'YOLOv8')
def _get_eval_batch_logging_interval():
return int(os.getenv('COMET_EVAL_BATCH_LOGGING_INTERVAL', 1))
def _get_max_image_predictions_to_log():
return int(os.getenv('COMET_MAX_IMAGE_PREDICTIONS', 100))
def _scale_confidence_score(score):
scale = float(os.getenv('COMET_MAX_CONFIDENCE_SCORE', 100.0))
return score * scale
def _should_log_confusion_matrix():
return os.getenv('COMET_EVAL_LOG_CONFUSION_MATRIX', 'false').lower() == 'true'
def _should_log_image_predictions():
return os.getenv('COMET_EVAL_LOG_IMAGE_PREDICTIONS', 'true').lower() == 'true'
def _get_experiment_type(mode, project_name):
"""Return an experiment based on mode and project name."""
if mode == 'offline':
return comet_ml.OfflineExperiment(project_name=project_name)
return comet_ml.Experiment(project_name=project_name)
def _create_experiment(args):
"""Ensures that the experiment object is only created in a single process during distributed training."""
if RANK not in (-1, 0):
return
try:
comet_mode = _get_comet_mode()
_project_name = os.getenv('COMET_PROJECT_NAME', args.project)
experiment = _get_experiment_type(comet_mode, _project_name)
experiment.log_parameters(vars(args))
experiment.log_others({
'eval_batch_logging_interval': _get_eval_batch_logging_interval(),
'log_confusion_matrix_on_eval': _should_log_confusion_matrix(),
'log_image_predictions': _should_log_image_predictions(),
'max_image_predictions': _get_max_image_predictions_to_log(), })
experiment.log_other('Created from', 'yolov8')
except Exception as e:
LOGGER.warning(f'WARNING ⚠️ Comet installed but not initialized correctly, not logging this run. {e}')
def _fetch_trainer_metadata(trainer):
"""Returns metadata for YOLO training including epoch and asset saving status."""
curr_epoch = trainer.epoch + 1
train_num_steps_per_epoch = len(trainer.train_loader.dataset) // trainer.batch_size
curr_step = curr_epoch * train_num_steps_per_epoch
final_epoch = curr_epoch == trainer.epochs
save = trainer.args.save
save_period = trainer.args.save_period
save_interval = curr_epoch % save_period == 0
save_assets = save and save_period > 0 and save_interval and not final_epoch
return dict(
curr_epoch=curr_epoch,
curr_step=curr_step,
save_assets=save_assets,
final_epoch=final_epoch,
)
def _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad):
"""YOLOv8 resizes images during training and the label values
are normalized based on this resized shape. This function rescales the
bounding box labels to the original image shape.
"""
resized_image_height, resized_image_width = resized_image_shape
# Convert normalized xywh format predictions to xyxy in resized scale format
box = ops.xywhn2xyxy(box, h=resized_image_height, w=resized_image_width)
# Scale box predictions from resized image scale back to original image scale
box = ops.scale_boxes(resized_image_shape, box, original_image_shape, ratio_pad)
# Convert bounding box format from xyxy to xywh for Comet logging
box = ops.xyxy2xywh(box)
# Adjust xy center to correspond top-left corner
box[:2] -= box[2:] / 2
box = box.tolist()
return box
def _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, class_name_map=None):
"""Format ground truth annotations for detection."""
indices = batch['batch_idx'] == img_idx
bboxes = batch['bboxes'][indices]
if len(bboxes) == 0:
LOGGER.debug(f'COMET WARNING: Image: {image_path} has no bounding boxes labels')
return None
cls_labels = batch['cls'][indices].squeeze(1).tolist()
if class_name_map:
cls_labels = [str(class_name_map[label]) for label in cls_labels]
original_image_shape = batch['ori_shape'][img_idx]
resized_image_shape = batch['resized_shape'][img_idx]
ratio_pad = batch['ratio_pad'][img_idx]
data = []
for box, label in zip(bboxes, cls_labels):
box = _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad)
data.append({
'boxes': [box],
'label': f'gt_{label}',
'score': _scale_confidence_score(1.0), })
return {'name': 'ground_truth', 'data': data}
def _format_prediction_annotations_for_detection(image_path, metadata, class_label_map=None):
"""Format YOLO predictions for object detection visualization."""
stem = image_path.stem
image_id = int(stem) if stem.isnumeric() else stem
predictions = metadata.get(image_id)
if not predictions:
LOGGER.debug(f'COMET WARNING: Image: {image_path} has no bounding boxes predictions')
return None
data = []
for prediction in predictions:
boxes = prediction['bbox']
score = _scale_confidence_score(prediction['score'])
cls_label = prediction['category_id']
if class_label_map:
cls_label = str(class_label_map[cls_label])
data.append({'boxes': [boxes], 'label': cls_label, 'score': score})
return {'name': 'prediction', 'data': data}
def _fetch_annotations(img_idx, image_path, batch, prediction_metadata_map, class_label_map):
"""Join the ground truth and prediction annotations if they exist."""
ground_truth_annotations = _format_ground_truth_annotations_for_detection(img_idx, image_path, batch,
class_label_map)
prediction_annotations = _format_prediction_annotations_for_detection(image_path, prediction_metadata_map,
class_label_map)
annotations = [
annotation for annotation in [ground_truth_annotations, prediction_annotations] if annotation is not None]
return [annotations] if annotations else None
def _create_prediction_metadata_map(model_predictions):
"""Create metadata map for model predictions by groupings them based on image ID."""
pred_metadata_map = {}
for prediction in model_predictions:
pred_metadata_map.setdefault(prediction['image_id'], [])
pred_metadata_map[prediction['image_id']].append(prediction)
return pred_metadata_map
def _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch):
"""Log the confusion matrix to Comet experiment."""
conf_mat = trainer.validator.confusion_matrix.matrix
names = list(trainer.data['names'].values()) + ['background']
experiment.log_confusion_matrix(
matrix=conf_mat,
labels=names,
max_categories=len(names),
epoch=curr_epoch,
step=curr_step,
)
def _log_images(experiment, image_paths, curr_step, annotations=None):
"""Logs images to the experiment with optional annotations."""
if annotations:
for image_path, annotation in zip(image_paths, annotations):
experiment.log_image(image_path, name=image_path.stem, step=curr_step, annotations=annotation)
else:
for image_path in image_paths:
experiment.log_image(image_path, name=image_path.stem, step=curr_step)
def _log_image_predictions(experiment, validator, curr_step):
"""Logs predicted boxes for a single image during training."""
global _comet_image_prediction_count
task = validator.args.task
if task not in COMET_SUPPORTED_TASKS:
return
jdict = validator.jdict
if not jdict:
return
predictions_metadata_map = _create_prediction_metadata_map(jdict)
dataloader = validator.dataloader
class_label_map = validator.names
batch_logging_interval = _get_eval_batch_logging_interval()
max_image_predictions = _get_max_image_predictions_to_log()
for batch_idx, batch in enumerate(dataloader):
if (batch_idx + 1) % batch_logging_interval != 0:
continue
image_paths = batch['im_file']
for img_idx, image_path in enumerate(image_paths):
if _comet_image_prediction_count >= max_image_predictions:
return
image_path = Path(image_path)
annotations = _fetch_annotations(
img_idx,
image_path,
batch,
predictions_metadata_map,
class_label_map,
)
_log_images(
experiment,
[image_path],
curr_step,
annotations=annotations,
)
_comet_image_prediction_count += 1
def _log_plots(experiment, trainer):
"""Logs evaluation plots and label plots for the experiment."""
plot_filenames = [trainer.save_dir / f'{plots}.png' for plots in EVALUATION_PLOT_NAMES]
_log_images(experiment, plot_filenames, None)
label_plot_filenames = [trainer.save_dir / f'{labels}.jpg' for labels in LABEL_PLOT_NAMES]
_log_images(experiment, label_plot_filenames, None)
def _log_model(experiment, trainer):
"""Log the best-trained model to Comet.ml."""
model_name = _get_comet_model_name()
experiment.log_model(
model_name,
file_or_folder=str(trainer.best),
file_name='best.pt',
overwrite=True,
)
def on_pretrain_routine_start(trainer):
"""Creates or resumes a CometML experiment at the start of a YOLO pre-training routine."""
experiment = comet_ml.get_global_experiment()
is_alive = getattr(experiment, 'alive', False)
if not experiment or not is_alive:
_create_experiment(trainer.args)
def on_train_epoch_end(trainer):
"""Log metrics and save batch images at the end of training epochs."""
experiment = comet_ml.get_global_experiment()
if not experiment:
return
metadata = _fetch_trainer_metadata(trainer)
curr_epoch = metadata['curr_epoch']
curr_step = metadata['curr_step']
experiment.log_metrics(
trainer.label_loss_items(trainer.tloss, prefix='train'),
step=curr_step,
epoch=curr_epoch,
)
if curr_epoch == 1:
_log_images(experiment, trainer.save_dir.glob('train_batch*.jpg'), curr_step)
def on_fit_epoch_end(trainer):
"""Logs model assets at the end of each epoch."""
experiment = comet_ml.get_global_experiment()
if not experiment:
return
metadata = _fetch_trainer_metadata(trainer)
curr_epoch = metadata['curr_epoch']
curr_step = metadata['curr_step']
save_assets = metadata['save_assets']
experiment.log_metrics(trainer.metrics, step=curr_step, epoch=curr_epoch)
experiment.log_metrics(trainer.lr, step=curr_step, epoch=curr_epoch)
if curr_epoch == 1:
experiment.log_metrics(model_info_for_loggers(trainer), step=curr_step, epoch=curr_epoch)
if not save_assets:
return
_log_model(experiment, trainer)
if _should_log_confusion_matrix():
_log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)
if _should_log_image_predictions():
_log_image_predictions(experiment, trainer.validator, curr_step)
def on_train_end(trainer):
"""Perform operations at the end of training."""
experiment = comet_ml.get_global_experiment()
if not experiment:
return
metadata = _fetch_trainer_metadata(trainer)
curr_epoch = metadata['curr_epoch']
curr_step = metadata['curr_step']
plots = trainer.args.plots
_log_model(experiment, trainer)
if plots:
_log_plots(experiment, trainer)
_log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)
_log_image_predictions(experiment, trainer.validator, curr_step)
experiment.end()
global _comet_image_prediction_count
_comet_image_prediction_count = 0
callbacks = {
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_train_epoch_end': on_train_epoch_end,
'on_fit_epoch_end': on_fit_epoch_end,
'on_train_end': on_train_end} if comet_ml else {}

View File

@ -1,136 +0,0 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import os
import pkg_resources as pkg
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
try:
from importlib.metadata import version
import dvclive
assert not TESTS_RUNNING # do not log pytest
ver = version('dvclive')
if pkg.parse_version(ver) < pkg.parse_version('2.11.0'):
LOGGER.debug(f'DVCLive is detected but version {ver} is incompatible (>=2.11 required).')
dvclive = None # noqa: F811
except (ImportError, AssertionError, TypeError):
dvclive = None
# DVCLive logger instance
live = None
_processed_plots = {}
# `on_fit_epoch_end` is called on final validation (probably need to be fixed)
# for now this is the way we distinguish final evaluation of the best model vs
# last epoch validation
_training_epoch = False
def _logger_disabled():
return os.getenv('ULTRALYTICS_DVC_DISABLED', 'false').lower() == 'true'
def _log_images(image_path, prefix=''):
if live:
live.log_image(os.path.join(prefix, image_path.name), image_path)
def _log_plots(plots, prefix=''):
for name, params in plots.items():
timestamp = params['timestamp']
if _processed_plots.get(name) != timestamp:
_log_images(name, prefix)
_processed_plots[name] = timestamp
def _log_confusion_matrix(validator):
targets = []
preds = []
matrix = validator.confusion_matrix.matrix
names = list(validator.names.values())
if validator.confusion_matrix.task == 'detect':
names += ['background']
for ti, pred in enumerate(matrix.T.astype(int)):
for pi, num in enumerate(pred):
targets.extend([names[ti]] * num)
preds.extend([names[pi]] * num)
live.log_sklearn_plot('confusion_matrix', targets, preds, name='cf.json', normalized=True)
def on_pretrain_routine_start(trainer):
try:
global live
if not _logger_disabled():
live = dvclive.Live(save_dvc_exp=True, cache_images=True)
LOGGER.info(
'DVCLive is detected and auto logging is enabled (can be disabled with `ULTRALYTICS_DVC_DISABLED=true`).'
)
else:
LOGGER.debug('DVCLive is detected and auto logging is disabled via `ULTRALYTICS_DVC_DISABLED`.')
live = None
except Exception as e:
LOGGER.warning(f'WARNING ⚠️ DVCLive installed but not initialized correctly, not logging this run. {e}')
def on_pretrain_routine_end(trainer):
_log_plots(trainer.plots, 'train')
def on_train_start(trainer):
if live:
live.log_params(trainer.args)
def on_train_epoch_start(trainer):
global _training_epoch
_training_epoch = True
def on_fit_epoch_end(trainer):
global _training_epoch
if live and _training_epoch:
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr}
for metric, value in all_metrics.items():
live.log_metric(metric, value)
if trainer.epoch == 0:
for metric, value in model_info_for_loggers(trainer).items():
live.log_metric(metric, value, plot=False)
_log_plots(trainer.plots, 'train')
_log_plots(trainer.validator.plots, 'val')
live.next_step()
_training_epoch = False
def on_train_end(trainer):
if live:
# At the end log the best metrics. It runs validator on the best model internally.
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr}
for metric, value in all_metrics.items():
live.log_metric(metric, value, plot=False)
_log_plots(trainer.plots, 'eval')
_log_plots(trainer.validator.plots, 'eval')
_log_confusion_matrix(trainer.validator)
if trainer.best.exists():
live.log_artifact(trainer.best, copy=True)
live.end()
callbacks = {
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_pretrain_routine_end': on_pretrain_routine_end,
'on_train_start': on_train_start,
'on_train_epoch_start': on_train_epoch_start,
'on_fit_epoch_end': on_fit_epoch_end,
'on_train_end': on_train_end} if dvclive else {}

View File

@ -1,87 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import json
from time import time
from ultralytics.hub.utils import PREFIX, events
from ultralytics.yolo.utils import LOGGER
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
def on_pretrain_routine_end(trainer):
"""Logs info before starting timer for upload rate limit."""
session = getattr(trainer, 'hub_session', None)
if session:
# Start timer for upload rate limit
LOGGER.info(f'{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀')
session.timers = {'metrics': time(), 'ckpt': time()} # start timer on session.rate_limit
def on_fit_epoch_end(trainer):
"""Uploads training progress metrics at the end of each epoch."""
session = getattr(trainer, 'hub_session', None)
if session:
# Upload metrics after val end
all_plots = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics}
if trainer.epoch == 0:
all_plots = {**all_plots, **model_info_for_loggers(trainer)}
session.metrics_queue[trainer.epoch] = json.dumps(all_plots)
if time() - session.timers['metrics'] > session.rate_limits['metrics']:
session.upload_metrics()
session.timers['metrics'] = time() # reset timer
session.metrics_queue = {} # reset queue
def on_model_save(trainer):
"""Saves checkpoints to Ultralytics HUB with rate limiting."""
session = getattr(trainer, 'hub_session', None)
if session:
# Upload checkpoints with rate limiting
is_best = trainer.best_fitness == trainer.fitness
if time() - session.timers['ckpt'] > session.rate_limits['ckpt']:
LOGGER.info(f'{PREFIX}Uploading checkpoint https://hub.ultralytics.com/models/{session.model_id}')
session.upload_model(trainer.epoch, trainer.last, is_best)
session.timers['ckpt'] = time() # reset timer
def on_train_end(trainer):
"""Upload final model and metrics to Ultralytics HUB at the end of training."""
session = getattr(trainer, 'hub_session', None)
if session:
# Upload final model and metrics with exponential standoff
LOGGER.info(f'{PREFIX}Syncing final model...')
session.upload_model(trainer.epoch, trainer.best, map=trainer.metrics.get('metrics/mAP50-95(B)', 0), final=True)
session.alive = False # stop heartbeats
LOGGER.info(f'{PREFIX}Done ✅\n'
f'{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀')
def on_train_start(trainer):
"""Run events on train start."""
events(trainer.args)
def on_val_start(validator):
"""Runs events on validation start."""
events(validator.args)
def on_predict_start(predictor):
"""Run events on predict start."""
events(predictor.args)
def on_export_start(exporter):
"""Run events on export start."""
events(exporter.args)
callbacks = {
'on_pretrain_routine_end': on_pretrain_routine_end,
'on_fit_epoch_end': on_fit_epoch_end,
'on_model_save': on_model_save,
'on_train_end': on_train_end,
'on_train_start': on_train_start,
'on_val_start': on_val_start,
'on_predict_start': on_predict_start,
'on_export_start': on_export_start}

View File

@ -1,71 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import os
import re
from pathlib import Path
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING, colorstr
try:
import mlflow
assert not TESTS_RUNNING # do not log pytest
assert hasattr(mlflow, '__version__') # verify package is not directory
except (ImportError, AssertionError):
mlflow = None
def on_pretrain_routine_end(trainer):
"""Logs training parameters to MLflow."""
global mlflow, run, run_id, experiment_name
if os.environ.get('MLFLOW_TRACKING_URI') is None:
mlflow = None
if mlflow:
mlflow_location = os.environ['MLFLOW_TRACKING_URI'] # "http://192.168.xxx.xxx:5000"
mlflow.set_tracking_uri(mlflow_location)
experiment_name = os.environ.get('MLFLOW_EXPERIMENT_NAME') or trainer.args.project or '/Shared/YOLOv8'
run_name = os.environ.get('MLFLOW_RUN') or trainer.args.name
experiment = mlflow.get_experiment_by_name(experiment_name)
if experiment is None:
mlflow.create_experiment(experiment_name)
mlflow.set_experiment(experiment_name)
prefix = colorstr('MLFlow: ')
try:
run, active_run = mlflow, mlflow.active_run()
if not active_run:
active_run = mlflow.start_run(experiment_id=experiment.experiment_id, run_name=run_name)
run_id = active_run.info.run_id
LOGGER.info(f'{prefix}Using run_id({run_id}) at {mlflow_location}')
run.log_params(vars(trainer.model.args))
except Exception as err:
LOGGER.error(f'{prefix}Failing init - {repr(err)}')
LOGGER.warning(f'{prefix}Continuing without Mlflow')
def on_fit_epoch_end(trainer):
"""Logs training metrics to Mlflow."""
if mlflow:
metrics_dict = {f"{re.sub('[()]', '', k)}": float(v) for k, v in trainer.metrics.items()}
run.log_metrics(metrics=metrics_dict, step=trainer.epoch)
def on_train_end(trainer):
"""Called at end of train loop to log model artifact info."""
if mlflow:
root_dir = Path(__file__).resolve().parents[3]
run.log_artifact(trainer.last)
run.log_artifact(trainer.best)
run.pyfunc.log_model(artifact_path=experiment_name,
code_path=[str(root_dir)],
artifacts={'model_path': str(trainer.save_dir)},
python_model=run.pyfunc.PythonModel())
callbacks = {
'on_pretrain_routine_end': on_pretrain_routine_end,
'on_fit_epoch_end': on_fit_epoch_end,
'on_train_end': on_train_end} if mlflow else {}

View File

@ -1,103 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
try:
import neptune
from neptune.types import File
assert not TESTS_RUNNING # do not log pytest
assert hasattr(neptune, '__version__')
except (ImportError, AssertionError):
neptune = None
run = None # NeptuneAI experiment logger instance
def _log_scalars(scalars, step=0):
"""Log scalars to the NeptuneAI experiment logger."""
if run:
for k, v in scalars.items():
run[k].append(value=v, step=step)
def _log_images(imgs_dict, group=''):
"""Log scalars to the NeptuneAI experiment logger."""
if run:
for k, v in imgs_dict.items():
run[f'{group}/{k}'].upload(File(v))
def _log_plot(title, plot_path):
"""Log plots to the NeptuneAI experiment logger."""
"""
Log image as plot in the plot section of NeptuneAI
arguments:
title (str) Title of the plot
plot_path (PosixPath or str) Path to the saved image file
"""
img = mpimg.imread(plot_path)
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks
ax.imshow(img)
run[f'Plots/{title}'].upload(fig)
def on_pretrain_routine_start(trainer):
"""Callback function called before the training routine starts."""
try:
global run
run = neptune.init_run(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, tags=['YOLOv8'])
run['Configuration/Hyperparameters'] = {k: '' if v is None else v for k, v in vars(trainer.args).items()}
except Exception as e:
LOGGER.warning(f'WARNING ⚠️ NeptuneAI installed but not initialized correctly, not logging this run. {e}')
def on_train_epoch_end(trainer):
"""Callback function called at end of each training epoch."""
_log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1)
_log_scalars(trainer.lr, trainer.epoch + 1)
if trainer.epoch == 1:
_log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, 'Mosaic')
def on_fit_epoch_end(trainer):
"""Callback function called at end of each fit (train+val) epoch."""
if run and trainer.epoch == 0:
run['Configuration/Model'] = model_info_for_loggers(trainer)
_log_scalars(trainer.metrics, trainer.epoch + 1)
def on_val_end(validator):
"""Callback function called at end of each validation."""
if run:
# Log val_labels and val_pred
_log_images({f.stem: str(f) for f in validator.save_dir.glob('val*.jpg')}, 'Validation')
def on_train_end(trainer):
"""Callback function called at end of training."""
if run:
# Log final results, CM matrix + PR plots
files = [
'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png',
*(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter
for f in files:
_log_plot(title=f.stem, plot_path=f)
# Log the final model
run[f'weights/{trainer.args.name or trainer.args.task}/{str(trainer.best.name)}'].upload(File(str(
trainer.best)))
callbacks = {
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_train_epoch_end': on_train_epoch_end,
'on_fit_epoch_end': on_fit_epoch_end,
'on_val_end': on_val_end,
'on_train_end': on_train_end} if neptune else {}

View File

@ -1,20 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
try:
import ray
from ray import tune
from ray.air import session
except (ImportError, AssertionError):
tune = None
def on_fit_epoch_end(trainer):
"""Sends training metrics to Ray Tune at end of each epoch."""
if ray.tune.is_session_enabled():
metrics = trainer.metrics
metrics['epoch'] = trainer.epoch
session.report(metrics)
callbacks = {
'on_fit_epoch_end': on_fit_epoch_end, } if tune else {}

View File

@ -1,47 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING, colorstr
try:
from torch.utils.tensorboard import SummaryWriter
assert not TESTS_RUNNING # do not log pytest
except (ImportError, AssertionError):
SummaryWriter = None
writer = None # TensorBoard SummaryWriter instance
def _log_scalars(scalars, step=0):
"""Logs scalar values to TensorBoard."""
if writer:
for k, v in scalars.items():
writer.add_scalar(k, v, step)
def on_pretrain_routine_start(trainer):
"""Initialize TensorBoard logging with SummaryWriter."""
if SummaryWriter:
try:
global writer
writer = SummaryWriter(str(trainer.save_dir))
prefix = colorstr('TensorBoard: ')
LOGGER.info(f"{prefix}Start with 'tensorboard --logdir {trainer.save_dir}', view at http://localhost:6006/")
except Exception as e:
LOGGER.warning(f'WARNING ⚠️ TensorBoard not initialized correctly, not logging this run. {e}')
def on_batch_end(trainer):
"""Logs scalar statistics at the end of a training batch."""
_log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1)
def on_fit_epoch_end(trainer):
"""Logs epoch metrics at end of training epoch."""
_log_scalars(trainer.metrics, trainer.epoch + 1)
callbacks = {
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_fit_epoch_end': on_fit_epoch_end,
'on_batch_end': on_batch_end}

View File

@ -1,60 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.yolo.utils import TESTS_RUNNING
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers
try:
import wandb as wb
assert hasattr(wb, '__version__')
assert not TESTS_RUNNING # do not log pytest
except (ImportError, AssertionError):
wb = None
_processed_plots = {}
def _log_plots(plots, step):
for name, params in plots.items():
timestamp = params['timestamp']
if _processed_plots.get(name, None) != timestamp:
wb.run.log({name.stem: wb.Image(str(name))}, step=step)
_processed_plots[name] = timestamp
def on_pretrain_routine_start(trainer):
"""Initiate and start project if module is present."""
wb.run or wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(trainer.args))
def on_fit_epoch_end(trainer):
"""Logs training metrics and model information at the end of an epoch."""
wb.run.log(trainer.metrics, step=trainer.epoch + 1)
_log_plots(trainer.plots, step=trainer.epoch + 1)
_log_plots(trainer.validator.plots, step=trainer.epoch + 1)
if trainer.epoch == 0:
wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1)
def on_train_epoch_end(trainer):
"""Log metrics and save images at the end of each training epoch."""
wb.run.log(trainer.label_loss_items(trainer.tloss, prefix='train'), step=trainer.epoch + 1)
wb.run.log(trainer.lr, step=trainer.epoch + 1)
if trainer.epoch == 1:
_log_plots(trainer.plots, step=trainer.epoch + 1)
def on_train_end(trainer):
"""Save the best model as an artifact at end of training."""
_log_plots(trainer.validator.plots, step=trainer.epoch + 1)
_log_plots(trainer.plots, step=trainer.epoch + 1)
art = wb.Artifact(type='model', name=f'run_{wb.run.id}_model')
if trainer.best.exists():
art.add_file(trainer.best)
wb.run.log_artifact(art, aliases=['best'])
callbacks = {
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_train_epoch_end': on_train_epoch_end,
'on_fit_epoch_end': on_fit_epoch_end,
'on_train_end': on_train_end} if wb else {}

View File

@ -1,459 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import glob
import inspect
import math
import os
import platform
import re
import shutil
import subprocess
import time
from pathlib import Path
from typing import Optional
import cv2
import numpy as np
import pkg_resources as pkg
import psutil
import requests
import torch
from matplotlib import font_manager
from ultralytics.yolo.utils import (AUTOINSTALL, LOGGER, ONLINE, ROOT, USER_CONFIG_DIR, ThreadingLocked, TryExcept,
clean_url, colorstr, downloads, emojis, is_colab, is_docker, is_jupyter, is_kaggle,
is_online, is_pip_package, url2file)
def is_ascii(s) -> bool:
"""
Check if a string is composed of only ASCII characters.
Args:
s (str): String to be checked.
Returns:
bool: True if the string is composed only of ASCII characters, False otherwise.
"""
# Convert list, tuple, None, etc. to string
s = str(s)
# Check if the string is composed of only ASCII characters
return all(ord(c) < 128 for c in s)
def check_imgsz(imgsz, stride=32, min_dim=1, max_dim=2, floor=0):
"""
Verify image size is a multiple of the given stride in each dimension. If the image size is not a multiple of the
stride, update it to the nearest multiple of the stride that is greater than or equal to the given floor value.
Args:
imgsz (int | cList[int]): Image size.
stride (int): Stride value.
min_dim (int): Minimum number of dimensions.
floor (int): Minimum allowed value for image size.
Returns:
(List[int]): Updated image size.
"""
# Convert stride to integer if it is a tensor
stride = int(stride.max() if isinstance(stride, torch.Tensor) else stride)
# Convert image size to list if it is an integer
if isinstance(imgsz, int):
imgsz = [imgsz]
elif isinstance(imgsz, (list, tuple)):
imgsz = list(imgsz)
else:
raise TypeError(f"'imgsz={imgsz}' is of invalid type {type(imgsz).__name__}. "
f"Valid imgsz types are int i.e. 'imgsz=640' or list i.e. 'imgsz=[640,640]'")
# Apply max_dim
if len(imgsz) > max_dim:
msg = "'train' and 'val' imgsz must be an integer, while 'predict' and 'export' imgsz may be a [h, w] list " \
"or an integer, i.e. 'yolo export imgsz=640,480' or 'yolo export imgsz=640'"
if max_dim != 1:
raise ValueError(f'imgsz={imgsz} is not a valid image size. {msg}')
LOGGER.warning(f"WARNING ⚠️ updating to 'imgsz={max(imgsz)}'. {msg}")
imgsz = [max(imgsz)]
# Make image size a multiple of the stride
sz = [max(math.ceil(x / stride) * stride, floor) for x in imgsz]
# Print warning message if image size was updated
if sz != imgsz:
LOGGER.warning(f'WARNING ⚠️ imgsz={imgsz} must be multiple of max stride {stride}, updating to {sz}')
# Add missing dimensions if necessary
sz = [sz[0], sz[0]] if min_dim == 2 and len(sz) == 1 else sz[0] if min_dim == 1 and len(sz) == 1 else sz
return sz
def check_version(current: str = '0.0.0',
minimum: str = '0.0.0',
name: str = 'version ',
pinned: bool = False,
hard: bool = False,
verbose: bool = False) -> bool:
"""
Check current version against the required minimum version.
Args:
current (str): Current version.
minimum (str): Required minimum version.
name (str): Name to be used in warning message.
pinned (bool): If True, versions must match exactly. If False, minimum version must be satisfied.
hard (bool): If True, raise an AssertionError if the minimum version is not met.
verbose (bool): If True, print warning message if minimum version is not met.
Returns:
(bool): True if minimum version is met, False otherwise.
"""
current, minimum = (pkg.parse_version(x) for x in (current, minimum))
result = (current == minimum) if pinned else (current >= minimum) # bool
warning_message = f'WARNING ⚠️ {name}{minimum} is required by YOLOv8, but {name}{current} is currently installed'
if hard:
assert result, emojis(warning_message) # assert min requirements met
if verbose and not result:
LOGGER.warning(warning_message)
return result
def check_latest_pypi_version(package_name='ultralytics'):
"""
Returns the latest version of a PyPI package without downloading or installing it.
Parameters:
package_name (str): The name of the package to find the latest version for.
Returns:
(str): The latest version of the package.
"""
with contextlib.suppress(Exception):
requests.packages.urllib3.disable_warnings() # Disable the InsecureRequestWarning
response = requests.get(f'https://pypi.org/pypi/{package_name}/json', timeout=3)
if response.status_code == 200:
return response.json()['info']['version']
return None
def check_pip_update_available():
"""
Checks if a new version of the ultralytics package is available on PyPI.
Returns:
(bool): True if an update is available, False otherwise.
"""
if ONLINE and is_pip_package():
with contextlib.suppress(Exception):
from ultralytics import __version__
latest = check_latest_pypi_version()
if pkg.parse_version(__version__) < pkg.parse_version(latest): # update is available
LOGGER.info(f'New https://pypi.org/project/ultralytics/{latest} available 😃 '
f"Update with 'pip install -U ultralytics'")
return True
return False
@ThreadingLocked()
def check_font(font='Arial.ttf'):
"""
Find font locally or download to user's configuration directory if it does not already exist.
Args:
font (str): Path or name of font.
Returns:
file (Path): Resolved font file path.
"""
name = Path(font).name
# Check USER_CONFIG_DIR
file = USER_CONFIG_DIR / name
if file.exists():
return file
# Check system fonts
matches = [s for s in font_manager.findSystemFonts() if font in s]
if any(matches):
return matches[0]
# Download to USER_CONFIG_DIR if missing
url = f'https://ultralytics.com/assets/{name}'
if downloads.is_url(url):
downloads.safe_download(url=url, file=file)
return file
def check_python(minimum: str = '3.7.0') -> bool:
"""
Check current python version against the required minimum version.
Args:
minimum (str): Required minimum version of python.
Returns:
None
"""
return check_version(platform.python_version(), minimum, name='Python ', hard=True)
@TryExcept()
def check_requirements(requirements=ROOT.parent / 'requirements.txt', exclude=(), install=True, cmds=''):
"""
Check if installed dependencies meet YOLOv8 requirements and attempt to auto-update if needed.
Args:
requirements (Union[Path, str, List[str]]): Path to a requirements.txt file, a single package requirement as a
string, or a list of package requirements as strings.
exclude (Tuple[str]): Tuple of package names to exclude from checking.
install (bool): If True, attempt to auto-update packages that don't meet requirements.
cmds (str): Additional commands to pass to the pip install command when auto-updating.
"""
prefix = colorstr('red', 'bold', 'requirements:')
check_python() # check python version
check_torchvision() # check torch-torchvision compatibility
if isinstance(requirements, Path): # requirements.txt file
file = requirements.resolve()
assert file.exists(), f'{prefix} {file} not found, check failed.'
with file.open() as f:
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
elif isinstance(requirements, str):
requirements = [requirements]
s = '' # console string
pkgs = []
for r in requirements:
r_stripped = r.split('/')[-1].replace('.git', '') # replace git+https://org/repo.git -> 'repo'
try:
pkg.require(r_stripped)
except (pkg.VersionConflict, pkg.DistributionNotFound): # exception if requirements not met
try: # attempt to import (slower but more accurate)
import importlib
importlib.import_module(next(pkg.parse_requirements(r_stripped)).name)
except ImportError:
s += f'"{r}" '
pkgs.append(r)
if s:
if install and AUTOINSTALL: # check environment variable
n = len(pkgs) # number of packages updates
LOGGER.info(f"{prefix} Ultralytics requirement{'s' * (n > 1)} {pkgs} not found, attempting AutoUpdate...")
try:
t = time.time()
assert is_online(), 'AutoUpdate skipped (offline)'
LOGGER.info(subprocess.check_output(f'pip install --no-cache {s} {cmds}', shell=True).decode())
dt = time.time() - t
LOGGER.info(
f"{prefix} AutoUpdate success ✅ {dt:.1f}s, installed {n} package{'s' * (n > 1)}: {pkgs}\n"
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n")
except Exception as e:
LOGGER.warning(f'{prefix}{e}')
return False
else:
return False
return True
def check_torchvision():
"""
Checks the installed versions of PyTorch and Torchvision to ensure they're compatible.
This function checks the installed versions of PyTorch and Torchvision, and warns if they're incompatible according
to the provided compatibility table based on https://github.com/pytorch/vision#installation. The
compatibility table is a dictionary where the keys are PyTorch versions and the values are lists of compatible
Torchvision versions.
"""
import torchvision
# Compatibility table
compatibility_table = {'2.0': ['0.15'], '1.13': ['0.14'], '1.12': ['0.13']}
# Extract only the major and minor versions
v_torch = '.'.join(torch.__version__.split('+')[0].split('.')[:2])
v_torchvision = '.'.join(torchvision.__version__.split('+')[0].split('.')[:2])
if v_torch in compatibility_table:
compatible_versions = compatibility_table[v_torch]
if all(pkg.parse_version(v_torchvision) != pkg.parse_version(v) for v in compatible_versions):
print(f'WARNING ⚠️ torchvision=={v_torchvision} is incompatible with torch=={v_torch}.\n'
f"Run 'pip install torchvision=={compatible_versions[0]}' to fix torchvision or "
"'pip install -U torch torchvision' to update both.\n"
'For a full compatibility table see https://github.com/pytorch/vision#installation')
def check_suffix(file='yolov8n.pt', suffix='.pt', msg=''):
"""Check file(s) for acceptable suffix."""
if file and suffix:
if isinstance(suffix, str):
suffix = (suffix, )
for f in file if isinstance(file, (list, tuple)) else [file]:
s = Path(f).suffix.lower().strip() # file suffix
if len(s):
assert s in suffix, f'{msg}{f} acceptable suffix is {suffix}, not {s}'
def check_yolov5u_filename(file: str, verbose: bool = True):
"""Replace legacy YOLOv5 filenames with updated YOLOv5u filenames."""
if ('yolov3' in file or 'yolov5' in file) and 'u' not in file:
original_file = file
file = re.sub(r'(.*yolov5([nsmlx]))\.pt', '\\1u.pt', file) # i.e. yolov5n.pt -> yolov5nu.pt
file = re.sub(r'(.*yolov5([nsmlx])6)\.pt', '\\1u.pt', file) # i.e. yolov5n6.pt -> yolov5n6u.pt
file = re.sub(r'(.*yolov3(|-tiny|-spp))\.pt', '\\1u.pt', file) # i.e. yolov3-spp.pt -> yolov3-sppu.pt
if file != original_file and verbose:
LOGGER.info(f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
f'trained with https://github.com/ultralytics/ultralytics and feature improved performance vs '
f'standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n')
return file
def check_file(file, suffix='', download=True, hard=True):
"""Search/download file (if necessary) and return path."""
check_suffix(file, suffix) # optional
file = str(file).strip() # convert to string and strip spaces
file = check_yolov5u_filename(file) # yolov5n -> yolov5nu
if not file or ('://' not in file and Path(file).exists()): # exists ('://' check required in Windows Python<3.10)
return file
elif download and file.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')): # download
url = file # warning: Pathlib turns :// -> :/
file = url2file(file) # '%2F' to '/', split https://url.com/file.txt?auth
if Path(file).exists():
LOGGER.info(f'Found {clean_url(url)} locally at {file}') # file already exists
else:
downloads.safe_download(url=url, file=file, unzip=False)
return file
else: # search
files = []
for d in 'models', 'datasets', 'tracker/cfg', 'yolo/cfg': # search directories
files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file
if not files and hard:
raise FileNotFoundError(f"'{file}' does not exist")
elif len(files) > 1 and hard:
raise FileNotFoundError(f"Multiple files match '{file}', specify exact path: {files}")
return files[0] if len(files) else [] # return file
def check_yaml(file, suffix=('.yaml', '.yml'), hard=True):
"""Search/download YAML file (if necessary) and return path, checking suffix."""
return check_file(file, suffix, hard=hard)
def check_imshow(warn=False):
"""Check if environment supports image displays."""
try:
assert not any((is_colab(), is_kaggle(), is_docker()))
cv2.imshow('test', np.zeros((1, 1, 3)))
cv2.waitKey(1)
cv2.destroyAllWindows()
cv2.waitKey(1)
return True
except Exception as e:
if warn:
LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}')
return False
def check_yolo(verbose=True, device=''):
"""Return a human-readable YOLO software and hardware summary."""
from ultralytics.yolo.utils.torch_utils import select_device
if is_jupyter():
if check_requirements('wandb', install=False):
os.system('pip uninstall -y wandb') # uninstall wandb: unwanted account creation prompt with infinite hang
if is_colab():
shutil.rmtree('sample_data', ignore_errors=True) # remove colab /sample_data directory
if verbose:
# System info
gib = 1 << 30 # bytes per GiB
ram = psutil.virtual_memory().total
total, used, free = shutil.disk_usage('/')
s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)'
with contextlib.suppress(Exception): # clear display if ipython is installed
from IPython import display
display.clear_output()
else:
s = ''
select_device(device=device, newline=False)
LOGGER.info(f'Setup complete ✅ {s}')
def check_amp(model):
"""
This function checks the PyTorch Automatic Mixed Precision (AMP) functionality of a YOLOv8 model.
If the checks fail, it means there are anomalies with AMP on the system that may cause NaN losses or zero-mAP
results, so AMP will be disabled during training.
Args:
model (nn.Module): A YOLOv8 model instance.
Returns:
(bool): Returns True if the AMP functionality works correctly with YOLOv8 model, else False.
Raises:
AssertionError: If the AMP checks fail, indicating anomalies with the AMP functionality on the system.
"""
device = next(model.parameters()).device # get model device
if device.type in ('cpu', 'mps'):
return False # AMP only used on CUDA devices
def amp_allclose(m, im):
"""All close FP32 vs AMP results."""
a = m(im, device=device, verbose=False)[0].boxes.data # FP32 inference
with torch.cuda.amp.autocast(True):
b = m(im, device=device, verbose=False)[0].boxes.data # AMP inference
del m
return a.shape == b.shape and torch.allclose(a, b.float(), atol=0.5) # close to 0.5 absolute tolerance
f = ROOT / 'assets/bus.jpg' # image to check
im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if ONLINE else np.ones((640, 640, 3))
prefix = colorstr('AMP: ')
LOGGER.info(f'{prefix}running Automatic Mixed Precision (AMP) checks with YOLOv8n...')
warning_msg = "Setting 'amp=True'. If you experience zero-mAP or NaN losses you can disable AMP with amp=False."
try:
from ultralytics import YOLO
assert amp_allclose(YOLO('yolov8n.pt'), im)
LOGGER.info(f'{prefix}checks passed ✅')
except ConnectionError:
LOGGER.warning(f'{prefix}checks skipped ⚠️, offline and unable to download YOLOv8n. {warning_msg}')
except (AttributeError, ModuleNotFoundError):
LOGGER.warning(
f'{prefix}checks skipped ⚠️. Unable to load YOLOv8n due to possible Ultralytics package modifications. {warning_msg}'
)
except AssertionError:
LOGGER.warning(f'{prefix}checks failed ❌. Anomalies were detected with AMP on your system that may lead to '
f'NaN losses or zero-mAP results, so AMP will be disabled during training.')
return False
return True
def git_describe(path=ROOT): # path must be a directory
"""Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe."""
try:
assert (Path(path) / '.git').is_dir()
return subprocess.check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
except AssertionError:
return ''
def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
"""Print function arguments (optional args dict)."""
def strip_auth(v):
"""Clean longer Ultralytics HUB URLs by stripping potential authentication information."""
return clean_url(v) if (isinstance(v, str) and v.startswith('http') and len(v) > 100) else v
x = inspect.currentframe().f_back # previous frame
file, _, func, _, _ = inspect.getframeinfo(x)
if args is None: # get args automatically
args, _, _, frm = inspect.getargvalues(x)
args = {k: v for k, v in frm.items() if k in args}
try:
file = Path(file).resolve().relative_to(ROOT).with_suffix('')
except ValueError:
file = Path(file).stem
s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '')
LOGGER.info(colorstr(s) + ', '.join(f'{k}={strip_auth(v)}' for k, v in args.items()))

View File

@ -1,67 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import os
import re
import shutil
import socket
import sys
import tempfile
from pathlib import Path
from . import USER_CONFIG_DIR
from .torch_utils import TORCH_1_9
def find_free_network_port() -> int:
"""Finds a free port on localhost.
It is useful in single-node training when we don't want to connect to a real main node but have to set the
`MASTER_PORT` environment variable.
"""
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(('127.0.0.1', 0))
return s.getsockname()[1] # port
def generate_ddp_file(trainer):
"""Generates a DDP file and returns its file name."""
module, name = f'{trainer.__class__.__module__}.{trainer.__class__.__name__}'.rsplit('.', 1)
content = f'''overrides = {vars(trainer.args)} \nif __name__ == "__main__":
from {module} import {name}
from ultralytics.yolo.utils import DEFAULT_CFG_DICT
cfg = DEFAULT_CFG_DICT.copy()
cfg.update(save_dir='') # handle the extra key 'save_dir'
trainer = {name}(cfg=cfg, overrides=overrides)
trainer.train()'''
(USER_CONFIG_DIR / 'DDP').mkdir(exist_ok=True)
with tempfile.NamedTemporaryFile(prefix='_temp_',
suffix=f'{id(trainer)}.py',
mode='w+',
encoding='utf-8',
dir=USER_CONFIG_DIR / 'DDP',
delete=False) as file:
file.write(content)
return file.name
def generate_ddp_command(world_size, trainer):
"""Generates and returns command for distributed training."""
import __main__ # noqa local import to avoid https://github.com/Lightning-AI/lightning/issues/15218
if not trainer.resume:
shutil.rmtree(trainer.save_dir) # remove the save_dir
file = str(Path(sys.argv[0]).resolve())
safe_pattern = re.compile(r'^[a-zA-Z0-9_. /\\-]{1,128}$') # allowed characters and maximum of 100 characters
if not (safe_pattern.match(file) and Path(file).exists() and file.endswith('.py')): # using CLI
file = generate_ddp_file(trainer)
dist_cmd = 'torch.distributed.run' if TORCH_1_9 else 'torch.distributed.launch'
port = find_free_network_port()
cmd = [sys.executable, '-m', dist_cmd, '--nproc_per_node', f'{world_size}', '--master_port', f'{port}', file]
return cmd, file
def ddp_cleanup(trainer, file):
"""Delete temp file if created."""
if f'{id(trainer)}.py' in file: # if temp_file suffix in file
os.remove(file)

View File

@ -1,271 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import shutil
import subprocess
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
from urllib import parse, request
from zipfile import BadZipFile, ZipFile, is_zipfile
import requests
import torch
from tqdm import tqdm
from ultralytics.yolo.utils import LOGGER, checks, clean_url, emojis, is_online, url2file
GITHUB_ASSET_NAMES = [f'yolov8{k}{suffix}.pt' for k in 'nsmlx' for suffix in ('', '6', '-cls', '-seg', '-pose')] + \
[f'yolov5{k}u.pt' for k in 'nsmlx'] + \
[f'yolov3{k}u.pt' for k in ('', '-spp', '-tiny')] + \
[f'yolo_nas_{k}.pt' for k in 'sml'] + \
[f'sam_{k}.pt' for k in 'bl'] + \
[f'FastSAM-{k}.pt' for k in 'sx'] + \
[f'rtdetr-{k}.pt' for k in 'lx'] + \
['mobile_sam.pt']
GITHUB_ASSET_STEMS = [Path(k).stem for k in GITHUB_ASSET_NAMES]
def is_url(url, check=True):
"""Check if string is URL and check if URL exists."""
with contextlib.suppress(Exception):
url = str(url)
result = parse.urlparse(url)
assert all([result.scheme, result.netloc]) # check if is url
if check:
with request.urlopen(url) as response:
return response.getcode() == 200 # check if exists online
return True
return False
def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX'), exist_ok=False):
"""
Unzips a *.zip file to the specified path, excluding files containing strings in the exclude list.
If the zipfile does not contain a single top-level directory, the function will create a new
directory with the same name as the zipfile (without the extension) to extract its contents.
If a path is not provided, the function will use the parent directory of the zipfile as the default path.
Args:
file (str): The path to the zipfile to be extracted.
path (str, optional): The path to extract the zipfile to. Defaults to None.
exclude (tuple, optional): A tuple of filename strings to be excluded. Defaults to ('.DS_Store', '__MACOSX').
exist_ok (bool, optional): Whether to overwrite existing contents if they exist. Defaults to False.
Raises:
BadZipFile: If the provided file does not exist or is not a valid zipfile.
Returns:
(Path): The path to the directory where the zipfile was extracted.
"""
if not (Path(file).exists() and is_zipfile(file)):
raise BadZipFile(f"File '{file}' does not exist or is a bad zip file.")
if path is None:
path = Path(file).parent # default path
# Unzip the file contents
with ZipFile(file) as zipObj:
file_list = [f for f in zipObj.namelist() if all(x not in f for x in exclude)]
top_level_dirs = {Path(f).parts[0] for f in file_list}
if len(top_level_dirs) > 1 or not file_list[0].endswith('/'):
path = Path(path) / Path(file).stem # define new unzip directory
# Check if destination directory already exists and contains files
extract_path = Path(path) / list(top_level_dirs)[0]
if extract_path.exists() and any(extract_path.iterdir()) and not exist_ok:
# If it exists and is not empty, return the path without unzipping
LOGGER.info(f'Skipping {file} unzip (already unzipped)')
return path
for f in file_list:
zipObj.extract(f, path=path)
return path # return unzip dir
def check_disk_space(url='https://ultralytics.com/assets/coco128.zip', sf=1.5, hard=True):
"""
Check if there is sufficient disk space to download and store a file.
Args:
url (str, optional): The URL to the file. Defaults to 'https://ultralytics.com/assets/coco128.zip'.
sf (float, optional): Safety factor, the multiplier for the required free space. Defaults to 2.0.
hard (bool, optional): Whether to throw an error or not on insufficient disk space. Defaults to True.
Returns:
(bool): True if there is sufficient disk space, False otherwise.
"""
with contextlib.suppress(Exception):
gib = 1 << 30 # bytes per GiB
data = int(requests.head(url).headers['Content-Length']) / gib # file size (GB)
total, used, free = (x / gib for x in shutil.disk_usage('/')) # bytes
if data * sf < free:
return True # sufficient space
# Insufficient space
text = (f'WARNING ⚠️ Insufficient free disk space {free:.1f} GB < {data * sf:.3f} GB required, '
f'Please free {data * sf - free:.1f} GB additional disk space and try again.')
if hard:
raise MemoryError(text)
else:
LOGGER.warning(text)
return False
# Pass if error
return True
def safe_download(url,
file=None,
dir=None,
unzip=True,
delete=False,
curl=False,
retry=3,
min_bytes=1E0,
progress=True):
"""
Downloads files from a URL, with options for retrying, unzipping, and deleting the downloaded file.
Args:
url (str): The URL of the file to be downloaded.
file (str, optional): The filename of the downloaded file.
If not provided, the file will be saved with the same name as the URL.
dir (str, optional): The directory to save the downloaded file.
If not provided, the file will be saved in the current working directory.
unzip (bool, optional): Whether to unzip the downloaded file. Default: True.
delete (bool, optional): Whether to delete the downloaded file after unzipping. Default: False.
curl (bool, optional): Whether to use curl command line tool for downloading. Default: False.
retry (int, optional): The number of times to retry the download in case of failure. Default: 3.
min_bytes (float, optional): The minimum number of bytes that the downloaded file should have, to be considered
a successful download. Default: 1E0.
progress (bool, optional): Whether to display a progress bar during the download. Default: True.
"""
f = dir / url2file(url) if dir else Path(file) # URL converted to filename
if '://' not in str(url) and Path(url).is_file(): # URL exists ('://' check required in Windows Python<3.10)
f = Path(url) # filename
elif not f.is_file(): # URL and file do not exist
assert dir or file, 'dir or file required for download'
f = dir / url2file(url) if dir else Path(file)
desc = f'Downloading {clean_url(url)} to {f}'
LOGGER.info(f'{desc}...')
f.parent.mkdir(parents=True, exist_ok=True) # make directory if missing
check_disk_space(url)
for i in range(retry + 1):
try:
if curl or i > 0: # curl download with retry, continue
s = 'sS' * (not progress) # silent
r = subprocess.run(['curl', '-#', f'-{s}L', url, '-o', f, '--retry', '3', '-C', '-']).returncode
assert r == 0, f'Curl return value {r}'
else: # urllib download
method = 'torch'
if method == 'torch':
torch.hub.download_url_to_file(url, f, progress=progress)
else:
from ultralytics.yolo.utils import TQDM_BAR_FORMAT
with request.urlopen(url) as response, tqdm(total=int(response.getheader('Content-Length', 0)),
desc=desc,
disable=not progress,
unit='B',
unit_scale=True,
unit_divisor=1024,
bar_format=TQDM_BAR_FORMAT) as pbar:
with open(f, 'wb') as f_opened:
for data in response:
f_opened.write(data)
pbar.update(len(data))
if f.exists():
if f.stat().st_size > min_bytes:
break # success
f.unlink() # remove partial downloads
except Exception as e:
if i == 0 and not is_online():
raise ConnectionError(emojis(f'❌ Download failure for {url}. Environment is not online.')) from e
elif i >= retry:
raise ConnectionError(emojis(f'❌ Download failure for {url}. Retry limit reached.')) from e
LOGGER.warning(f'⚠️ Download failure, retrying {i + 1}/{retry} {url}...')
if unzip and f.exists() and f.suffix in ('', '.zip', '.tar', '.gz'):
unzip_dir = dir or f.parent # unzip to dir if provided else unzip in place
LOGGER.info(f'Unzipping {f} to {unzip_dir.absolute()}...')
if is_zipfile(f):
unzip_dir = unzip_file(file=f, path=unzip_dir) # unzip
elif f.suffix == '.tar':
subprocess.run(['tar', 'xf', f, '--directory', unzip_dir], check=True) # unzip
elif f.suffix == '.gz':
subprocess.run(['tar', 'xfz', f, '--directory', unzip_dir], check=True) # unzip
if delete:
f.unlink() # remove zip
return unzip_dir
def get_github_assets(repo='ultralytics/assets', version='latest'):
"""Return GitHub repo tag and assets (i.e. ['yolov8n.pt', 'yolov8s.pt', ...])."""
if version != 'latest':
version = f'tags/{version}' # i.e. tags/v6.2
response = requests.get(f'https://api.github.com/repos/{repo}/releases/{version}').json() # github api
return response['tag_name'], [x['name'] for x in response['assets']] # tag, assets
def attempt_download_asset(file, repo='ultralytics/assets', release='v0.0.0'):
"""Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v6.2', etc."""
from ultralytics.yolo.utils import SETTINGS # scoped for circular import
# YOLOv3/5u updates
file = str(file)
file = checks.check_yolov5u_filename(file)
file = Path(file.strip().replace("'", ''))
if file.exists():
return str(file)
elif (SETTINGS['weights_dir'] / file).exists():
return str(SETTINGS['weights_dir'] / file)
else:
# URL specified
name = Path(parse.unquote(str(file))).name # decode '%2F' to '/' etc.
if str(file).startswith(('http:/', 'https:/')): # download
url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
file = url2file(name) # parse authentication https://url.com/file.txt?auth...
if Path(file).is_file():
LOGGER.info(f'Found {clean_url(url)} locally at {file}') # file already exists
else:
safe_download(url=url, file=file, min_bytes=1E5)
return file
# GitHub assets
assets = GITHUB_ASSET_NAMES
try:
tag, assets = get_github_assets(repo, release)
except Exception:
try:
tag, assets = get_github_assets(repo) # latest release
except Exception:
try:
tag = subprocess.check_output(['git', 'tag']).decode().split()[-1]
except Exception:
tag = release
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
if name in assets:
safe_download(url=f'https://github.com/{repo}/releases/download/{tag}/{name}', file=file, min_bytes=1E5)
return str(file)
def download(url, dir=Path.cwd(), unzip=True, delete=False, curl=False, threads=1, retry=3):
"""Downloads and unzips files concurrently if threads > 1, else sequentially."""
dir = Path(dir)
dir.mkdir(parents=True, exist_ok=True) # make directory
if threads > 1:
with ThreadPool(threads) as pool:
pool.map(
lambda x: safe_download(
url=x[0], dir=x[1], unzip=unzip, delete=delete, curl=curl, retry=retry, progress=threads <= 1),
zip(url, repeat(dir)))
pool.close()
pool.join()
else:
for u in [url] if isinstance(url, (str, Path)) else url:
safe_download(url=u, dir=dir, unzip=unzip, delete=delete, curl=curl, retry=retry)

View File

@ -1,10 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.yolo.utils import emojis
class HUBModelError(Exception):
def __init__(self, message='Model not found. Please check model URL and try again.'):
"""Create an exception for when a model is not found."""
super().__init__(emojis(message))

View File

@ -1,100 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import glob
import os
import shutil
from datetime import datetime
from pathlib import Path
class WorkingDirectory(contextlib.ContextDecorator):
"""Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager."""
def __init__(self, new_dir):
"""Sets the working directory to 'new_dir' upon instantiation."""
self.dir = new_dir # new dir
self.cwd = Path.cwd().resolve() # current dir
def __enter__(self):
"""Changes the current directory to the specified directory."""
os.chdir(self.dir)
def __exit__(self, exc_type, exc_val, exc_tb):
"""Restore the current working directory on context exit."""
os.chdir(self.cwd)
def increment_path(path, exist_ok=False, sep='', mkdir=False):
"""
Increments a file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
If the path exists and exist_ok is not set to True, the path will be incremented by appending a number and sep to
the end of the path. If the path is a file, the file extension will be preserved. If the path is a directory, the
number will be appended directly to the end of the path. If mkdir is set to True, the path will be created as a
directory if it does not already exist.
Args:
path (str, pathlib.Path): Path to increment.
exist_ok (bool, optional): If True, the path will not be incremented and returned as-is. Defaults to False.
sep (str, optional): Separator to use between the path and the incrementation number. Defaults to ''.
mkdir (bool, optional): Create a directory if it does not exist. Defaults to False.
Returns:
(pathlib.Path): Incremented path.
"""
path = Path(path) # os-agnostic
if path.exists() and not exist_ok:
path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
# Method 1
for n in range(2, 9999):
p = f'{path}{sep}{n}{suffix}' # increment path
if not os.path.exists(p): #
break
path = Path(p)
if mkdir:
path.mkdir(parents=True, exist_ok=True) # make directory
return path
def file_age(path=__file__):
"""Return days since last file update."""
dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta
return dt.days # + dt.seconds / 86400 # fractional days
def file_date(path=__file__):
"""Return human-readable file modification date, i.e. '2021-3-26'."""
t = datetime.fromtimestamp(Path(path).stat().st_mtime)
return f'{t.year}-{t.month}-{t.day}'
def file_size(path):
"""Return file/dir size (MB)."""
if isinstance(path, (str, Path)):
mb = 1 << 20 # bytes to MiB (1024 ** 2)
path = Path(path)
if path.is_file():
return path.stat().st_size / mb
elif path.is_dir():
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb
return 0.0
def get_latest_run(search_dir='.'):
"""Return path to most recent 'last.pt' in /runs (i.e. to --resume from)."""
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
return max(last_list, key=os.path.getctime) if last_list else ''
def make_dirs(dir='new_dir/'):
"""Create directories."""
dir = Path(dir)
if dir.exists():
shutil.rmtree(dir) # delete dir
for p in dir, dir / 'labels', dir / 'images':
p.mkdir(parents=True, exist_ok=True) # make dir
return dir

View File

@ -1,392 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from collections import abc
from itertools import repeat
from numbers import Number
from typing import List
import numpy as np
from .ops import ltwh2xywh, ltwh2xyxy, resample_segments, xywh2ltwh, xywh2xyxy, xyxy2ltwh, xyxy2xywh
def _ntuple(n):
"""From PyTorch internals."""
def parse(x):
"""Parse bounding boxes format between XYWH and LTWH."""
return x if isinstance(x, abc.Iterable) else tuple(repeat(x, n))
return parse
to_2tuple = _ntuple(2)
to_4tuple = _ntuple(4)
# `xyxy` means left top and right bottom
# `xywh` means center x, center y and width, height(yolo format)
# `ltwh` means left top and width, height(coco format)
_formats = ['xyxy', 'xywh', 'ltwh']
__all__ = 'Bboxes', # tuple or list
class Bboxes:
"""Now only numpy is supported."""
def __init__(self, bboxes, format='xyxy') -> None:
assert format in _formats, f'Invalid bounding box format: {format}, format must be one of {_formats}'
bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes
assert bboxes.ndim == 2
assert bboxes.shape[1] == 4
self.bboxes = bboxes
self.format = format
# self.normalized = normalized
# def convert(self, format):
# assert format in _formats
# if self.format == format:
# bboxes = self.bboxes
# elif self.format == "xyxy":
# if format == "xywh":
# bboxes = xyxy2xywh(self.bboxes)
# else:
# bboxes = xyxy2ltwh(self.bboxes)
# elif self.format == "xywh":
# if format == "xyxy":
# bboxes = xywh2xyxy(self.bboxes)
# else:
# bboxes = xywh2ltwh(self.bboxes)
# else:
# if format == "xyxy":
# bboxes = ltwh2xyxy(self.bboxes)
# else:
# bboxes = ltwh2xywh(self.bboxes)
#
# return Bboxes(bboxes, format)
def convert(self, format):
"""Converts bounding box format from one type to another."""
assert format in _formats, f'Invalid bounding box format: {format}, format must be one of {_formats}'
if self.format == format:
return
elif self.format == 'xyxy':
bboxes = xyxy2xywh(self.bboxes) if format == 'xywh' else xyxy2ltwh(self.bboxes)
elif self.format == 'xywh':
bboxes = xywh2xyxy(self.bboxes) if format == 'xyxy' else xywh2ltwh(self.bboxes)
else:
bboxes = ltwh2xyxy(self.bboxes) if format == 'xyxy' else ltwh2xywh(self.bboxes)
self.bboxes = bboxes
self.format = format
def areas(self):
"""Return box areas."""
self.convert('xyxy')
return (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1])
# def denormalize(self, w, h):
# if not self.normalized:
# return
# assert (self.bboxes <= 1.0).all()
# self.bboxes[:, 0::2] *= w
# self.bboxes[:, 1::2] *= h
# self.normalized = False
#
# def normalize(self, w, h):
# if self.normalized:
# return
# assert (self.bboxes > 1.0).any()
# self.bboxes[:, 0::2] /= w
# self.bboxes[:, 1::2] /= h
# self.normalized = True
def mul(self, scale):
"""
Args:
scale (tuple | list | int): the scale for four coords.
"""
if isinstance(scale, Number):
scale = to_4tuple(scale)
assert isinstance(scale, (tuple, list))
assert len(scale) == 4
self.bboxes[:, 0] *= scale[0]
self.bboxes[:, 1] *= scale[1]
self.bboxes[:, 2] *= scale[2]
self.bboxes[:, 3] *= scale[3]
def add(self, offset):
"""
Args:
offset (tuple | list | int): the offset for four coords.
"""
if isinstance(offset, Number):
offset = to_4tuple(offset)
assert isinstance(offset, (tuple, list))
assert len(offset) == 4
self.bboxes[:, 0] += offset[0]
self.bboxes[:, 1] += offset[1]
self.bboxes[:, 2] += offset[2]
self.bboxes[:, 3] += offset[3]
def __len__(self):
"""Return the number of boxes."""
return len(self.bboxes)
@classmethod
def concatenate(cls, boxes_list: List['Bboxes'], axis=0) -> 'Bboxes':
"""
Concatenate a list of Bboxes objects into a single Bboxes object.
Args:
boxes_list (List[Bboxes]): A list of Bboxes objects to concatenate.
axis (int, optional): The axis along which to concatenate the bounding boxes.
Defaults to 0.
Returns:
Bboxes: A new Bboxes object containing the concatenated bounding boxes.
Note:
The input should be a list or tuple of Bboxes objects.
"""
assert isinstance(boxes_list, (list, tuple))
if not boxes_list:
return cls(np.empty(0))
assert all(isinstance(box, Bboxes) for box in boxes_list)
if len(boxes_list) == 1:
return boxes_list[0]
return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis))
def __getitem__(self, index) -> 'Bboxes':
"""
Retrieve a specific bounding box or a set of bounding boxes using indexing.
Args:
index (int, slice, or np.ndarray): The index, slice, or boolean array to select
the desired bounding boxes.
Returns:
Bboxes: A new Bboxes object containing the selected bounding boxes.
Raises:
AssertionError: If the indexed bounding boxes do not form a 2-dimensional matrix.
Note:
When using boolean indexing, make sure to provide a boolean array with the same
length as the number of bounding boxes.
"""
if isinstance(index, int):
return Bboxes(self.bboxes[index].view(1, -1))
b = self.bboxes[index]
assert b.ndim == 2, f'Indexing on Bboxes with {index} failed to return a matrix!'
return Bboxes(b)
class Instances:
def __init__(self, bboxes, segments=None, keypoints=None, bbox_format='xywh', normalized=True) -> None:
"""
Args:
bboxes (ndarray): bboxes with shape [N, 4].
segments (list | ndarray): segments.
keypoints (ndarray): keypoints(x, y, visible) with shape [N, 17, 3].
"""
if segments is None:
segments = []
self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
self.keypoints = keypoints
self.normalized = normalized
if len(segments) > 0:
# list[np.array(1000, 2)] * num_samples
segments = resample_segments(segments)
# (N, 1000, 2)
segments = np.stack(segments, axis=0)
else:
segments = np.zeros((0, 1000, 2), dtype=np.float32)
self.segments = segments
def convert_bbox(self, format):
"""Convert bounding box format."""
self._bboxes.convert(format=format)
@property
def bbox_areas(self):
"""Calculate the area of bounding boxes."""
return self._bboxes.areas()
def scale(self, scale_w, scale_h, bbox_only=False):
"""this might be similar with denormalize func but without normalized sign."""
self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h))
if bbox_only:
return
self.segments[..., 0] *= scale_w
self.segments[..., 1] *= scale_h
if self.keypoints is not None:
self.keypoints[..., 0] *= scale_w
self.keypoints[..., 1] *= scale_h
def denormalize(self, w, h):
"""Denormalizes boxes, segments, and keypoints from normalized coordinates."""
if not self.normalized:
return
self._bboxes.mul(scale=(w, h, w, h))
self.segments[..., 0] *= w
self.segments[..., 1] *= h
if self.keypoints is not None:
self.keypoints[..., 0] *= w
self.keypoints[..., 1] *= h
self.normalized = False
def normalize(self, w, h):
"""Normalize bounding boxes, segments, and keypoints to image dimensions."""
if self.normalized:
return
self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h))
self.segments[..., 0] /= w
self.segments[..., 1] /= h
if self.keypoints is not None:
self.keypoints[..., 0] /= w
self.keypoints[..., 1] /= h
self.normalized = True
def add_padding(self, padw, padh):
"""Handle rect and mosaic situation."""
assert not self.normalized, 'you should add padding with absolute coordinates.'
self._bboxes.add(offset=(padw, padh, padw, padh))
self.segments[..., 0] += padw
self.segments[..., 1] += padh
if self.keypoints is not None:
self.keypoints[..., 0] += padw
self.keypoints[..., 1] += padh
def __getitem__(self, index) -> 'Instances':
"""
Retrieve a specific instance or a set of instances using indexing.
Args:
index (int, slice, or np.ndarray): The index, slice, or boolean array to select
the desired instances.
Returns:
Instances: A new Instances object containing the selected bounding boxes,
segments, and keypoints if present.
Note:
When using boolean indexing, make sure to provide a boolean array with the same
length as the number of instances.
"""
segments = self.segments[index] if len(self.segments) else self.segments
keypoints = self.keypoints[index] if self.keypoints is not None else None
bboxes = self.bboxes[index]
bbox_format = self._bboxes.format
return Instances(
bboxes=bboxes,
segments=segments,
keypoints=keypoints,
bbox_format=bbox_format,
normalized=self.normalized,
)
def flipud(self, h):
"""Flips the coordinates of bounding boxes, segments, and keypoints vertically."""
if self._bboxes.format == 'xyxy':
y1 = self.bboxes[:, 1].copy()
y2 = self.bboxes[:, 3].copy()
self.bboxes[:, 1] = h - y2
self.bboxes[:, 3] = h - y1
else:
self.bboxes[:, 1] = h - self.bboxes[:, 1]
self.segments[..., 1] = h - self.segments[..., 1]
if self.keypoints is not None:
self.keypoints[..., 1] = h - self.keypoints[..., 1]
def fliplr(self, w):
"""Reverses the order of the bounding boxes and segments horizontally."""
if self._bboxes.format == 'xyxy':
x1 = self.bboxes[:, 0].copy()
x2 = self.bboxes[:, 2].copy()
self.bboxes[:, 0] = w - x2
self.bboxes[:, 2] = w - x1
else:
self.bboxes[:, 0] = w - self.bboxes[:, 0]
self.segments[..., 0] = w - self.segments[..., 0]
if self.keypoints is not None:
self.keypoints[..., 0] = w - self.keypoints[..., 0]
def clip(self, w, h):
"""Clips bounding boxes, segments, and keypoints values to stay within image boundaries."""
ori_format = self._bboxes.format
self.convert_bbox(format='xyxy')
self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w)
self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h)
if ori_format != 'xyxy':
self.convert_bbox(format=ori_format)
self.segments[..., 0] = self.segments[..., 0].clip(0, w)
self.segments[..., 1] = self.segments[..., 1].clip(0, h)
if self.keypoints is not None:
self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w)
self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h)
def remove_zero_area_boxes(self):
"""Remove zero-area boxes, i.e. after clipping some boxes may have zero width or height. This removes them."""
good = self.bbox_areas > 0
if not all(good):
self._bboxes = self._bboxes[good]
if len(self.segments):
self.segments = self.segments[good]
if self.keypoints is not None:
self.keypoints = self.keypoints[good]
return good
def update(self, bboxes, segments=None, keypoints=None):
"""Updates instance variables."""
self._bboxes = Bboxes(bboxes, format=self._bboxes.format)
if segments is not None:
self.segments = segments
if keypoints is not None:
self.keypoints = keypoints
def __len__(self):
"""Return the length of the instance list."""
return len(self.bboxes)
@classmethod
def concatenate(cls, instances_list: List['Instances'], axis=0) -> 'Instances':
"""
Concatenates a list of Instances objects into a single Instances object.
Args:
instances_list (List[Instances]): A list of Instances objects to concatenate.
axis (int, optional): The axis along which the arrays will be concatenated. Defaults to 0.
Returns:
Instances: A new Instances object containing the concatenated bounding boxes,
segments, and keypoints if present.
Note:
The `Instances` objects in the list should have the same properties, such as
the format of the bounding boxes, whether keypoints are present, and if the
coordinates are normalized.
"""
assert isinstance(instances_list, (list, tuple))
if not instances_list:
return cls(np.empty(0))
assert all(isinstance(instance, Instances) for instance in instances_list)
if len(instances_list) == 1:
return instances_list[0]
use_keypoint = instances_list[0].keypoints is not None
bbox_format = instances_list[0]._bboxes.format
normalized = instances_list[0].normalized
cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis)
cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis)
cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None
return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized)
@property
def bboxes(self):
"""Return bounding boxes."""
return self._bboxes.bboxes

View File

@ -1,392 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.yolo.utils.metrics import OKS_SIGMA
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
from .metrics import bbox_iou
from .tal import bbox2dist
class VarifocalLoss(nn.Module):
"""Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367."""
def __init__(self):
"""Initialize the VarifocalLoss class."""
super().__init__()
def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
"""Computes varfocal loss."""
weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
with torch.cuda.amp.autocast(enabled=False):
loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction='none') *
weight).mean(1).sum()
return loss
# Losses
class FocalLoss(nn.Module):
"""Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""
def __init__(self, ):
super().__init__()
def forward(self, pred, label, gamma=1.5, alpha=0.25):
"""Calculates and updates confusion matrix for object detection/classification tasks."""
loss = F.binary_cross_entropy_with_logits(pred, label, reduction='none')
# p_t = torch.exp(-loss)
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
pred_prob = pred.sigmoid() # prob from logits
p_t = label * pred_prob + (1 - label) * (1 - pred_prob)
modulating_factor = (1.0 - p_t) ** gamma
loss *= modulating_factor
if alpha > 0:
alpha_factor = label * alpha + (1 - label) * (1 - alpha)
loss *= alpha_factor
return loss.mean(1).sum()
class BboxLoss(nn.Module):
def __init__(self, reg_max, use_dfl=False):
"""Initialize the BboxLoss module with regularization maximum and DFL settings."""
super().__init__()
self.reg_max = reg_max
self.use_dfl = use_dfl
def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
"""IoU loss."""
weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)
loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum
# DFL loss
if self.use_dfl:
target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weight
loss_dfl = loss_dfl.sum() / target_scores_sum
else:
loss_dfl = torch.tensor(0.0).to(pred_dist.device)
return loss_iou, loss_dfl
@staticmethod
def _df_loss(pred_dist, target):
"""Return sum of left and right DFL losses."""
# Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
tl = target.long() # target left
tr = tl + 1 # target right
wl = tr - target # weight left
wr = 1 - wl # weight right
return (F.cross_entropy(pred_dist, tl.view(-1), reduction='none').view(tl.shape) * wl +
F.cross_entropy(pred_dist, tr.view(-1), reduction='none').view(tl.shape) * wr).mean(-1, keepdim=True)
class KeypointLoss(nn.Module):
def __init__(self, sigmas) -> None:
super().__init__()
self.sigmas = sigmas
def forward(self, pred_kpts, gt_kpts, kpt_mask, area):
"""Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints."""
d = (pred_kpts[..., 0] - gt_kpts[..., 0]) ** 2 + (pred_kpts[..., 1] - gt_kpts[..., 1]) ** 2
kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0)) / (torch.sum(kpt_mask != 0) + 1e-9)
# e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula
e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2 # from cocoeval
return kpt_loss_factor * ((1 - torch.exp(-e)) * kpt_mask).mean()
# Criterion class for computing Detection training losses
class v8DetectionLoss:
def __init__(self, model): # model must be de-paralleled
device = next(model.parameters()).device # get model device
h = model.args # hyperparameters
m = model.model[-1] # Detect() module
self.bce = nn.BCEWithLogitsLoss(reduction='none')
self.hyp = h
self.stride = m.stride # model strides
self.nc = m.nc # number of classes
self.no = m.no
self.reg_max = m.reg_max
self.device = device
self.use_dfl = m.reg_max > 1
self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)
def preprocess(self, targets, batch_size, scale_tensor):
"""Preprocesses the target counts and matches with the input batch size to output a tensor."""
if targets.shape[0] == 0:
out = torch.zeros(batch_size, 0, 5, device=self.device)
else:
i = targets[:, 0] # image index
_, counts = i.unique(return_counts=True)
counts = counts.to(dtype=torch.int32)
out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
for j in range(batch_size):
matches = i == j
n = matches.sum()
if n:
out[j, :n] = targets[matches, 1:]
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
return out
def bbox_decode(self, anchor_points, pred_dist):
"""Decode predicted object bounding box coordinates from anchor points and distribution."""
if self.use_dfl:
b, a, c = pred_dist.shape # batch, anchors, channels
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
return dist2bbox(pred_dist, anchor_points, xywh=False)
def __call__(self, preds, batch):
"""Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
loss = torch.zeros(3, device=self.device) # box, cls, dfl
feats = preds[1] if isinstance(preds, tuple) else preds
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
(self.reg_max * 4, self.nc), 1)
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
dtype = pred_scores.dtype
batch_size = pred_scores.shape[0]
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
# targets
targets = torch.cat((batch['batch_idx'].view(-1, 1), batch['cls'].view(-1, 1), batch['bboxes']), 1)
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
# pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
_, target_bboxes, target_scores, fg_mask, _ = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
target_scores_sum = max(target_scores.sum(), 1)
# cls loss
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
# bbox loss
if fg_mask.sum():
target_bboxes /= stride_tensor
loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
target_scores_sum, fg_mask)
loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.cls # cls gain
loss[2] *= self.hyp.dfl # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
# Criterion class for computing training losses
class v8SegmentationLoss(v8DetectionLoss):
def __init__(self, model): # model must be de-paralleled
super().__init__(model)
self.nm = model.model[-1].nm # number of masks
self.overlap = model.args.overlap_mask
def __call__(self, preds, batch):
"""Calculate and return the loss for the YOLO model."""
loss = torch.zeros(4, device=self.device) # box, cls, dfl
feats, pred_masks, proto = preds if len(preds) == 3 else preds[1]
batch_size, _, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
(self.reg_max * 4, self.nc), 1)
# b, grids, ..
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
pred_masks = pred_masks.permute(0, 2, 1).contiguous()
dtype = pred_scores.dtype
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
# targets
try:
batch_idx = batch['batch_idx'].view(-1, 1)
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
except RuntimeError as e:
raise TypeError('ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n'
"This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
"i.e. 'yolo train model=yolov8n-seg.pt data=coco128.yaml'.\nVerify your dataset is a "
"correctly formatted 'segment' dataset using 'data=coco128-seg.yaml' "
'as an example.\nSee https://docs.ultralytics.com/tasks/segment/ for help.') from e
# pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
target_scores_sum = max(target_scores.sum(), 1)
# cls loss
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
if fg_mask.sum():
# bbox loss
loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor,
target_scores, target_scores_sum, fg_mask)
# masks loss
masks = batch['masks'].to(self.device).float()
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
for i in range(batch_size):
if fg_mask[i].sum():
mask_idx = target_gt_idx[i][fg_mask[i]]
if self.overlap:
gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
else:
gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy, marea) # seg
# WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
else:
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss
# WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
else:
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss
loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.box / batch_size # seg gain
loss[2] *= self.hyp.cls # cls gain
loss[3] *= self.hyp.dfl # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
"""Mask loss for one image."""
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80)
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
# Criterion class for computing training losses
class v8PoseLoss(v8DetectionLoss):
def __init__(self, model): # model must be de-paralleled
super().__init__(model)
self.kpt_shape = model.model[-1].kpt_shape
self.bce_pose = nn.BCEWithLogitsLoss()
is_pose = self.kpt_shape == [17, 3]
nkpt = self.kpt_shape[0] # number of keypoints
sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt
self.keypoint_loss = KeypointLoss(sigmas=sigmas)
def __call__(self, preds, batch):
"""Calculate the total loss and detach it."""
loss = torch.zeros(5, device=self.device) # box, cls, dfl, kpt_location, kpt_visibility
feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1]
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
(self.reg_max * 4, self.nc), 1)
# b, grids, ..
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
pred_kpts = pred_kpts.permute(0, 2, 1).contiguous()
dtype = pred_scores.dtype
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
# targets
batch_size = pred_scores.shape[0]
batch_idx = batch['batch_idx'].view(-1, 1)
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
# pboxes
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) # (b, h*w, 17, 3)
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
target_scores_sum = max(target_scores.sum(), 1)
# cls loss
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
# bbox loss
if fg_mask.sum():
target_bboxes /= stride_tensor
loss[0], loss[4] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
target_scores_sum, fg_mask)
keypoints = batch['keypoints'].to(self.device).float().clone()
keypoints[..., 0] *= imgsz[1]
keypoints[..., 1] *= imgsz[0]
for i in range(batch_size):
if fg_mask[i].sum():
idx = target_gt_idx[i][fg_mask[i]]
gt_kpt = keypoints[batch_idx.view(-1) == i][idx] # (n, 51)
gt_kpt[..., 0] /= stride_tensor[fg_mask[i]]
gt_kpt[..., 1] /= stride_tensor[fg_mask[i]]
area = xyxy2xywh(target_bboxes[i][fg_mask[i]])[:, 2:].prod(1, keepdim=True)
pred_kpt = pred_kpts[i][fg_mask[i]]
kpt_mask = gt_kpt[..., 2] != 0
loss[1] += self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss
# kpt_score loss
if pred_kpt.shape[-1] == 3:
loss[2] += self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss
loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.pose / batch_size # pose gain
loss[2] *= self.hyp.kobj / batch_size # kobj gain
loss[3] *= self.hyp.cls # cls gain
loss[4] *= self.hyp.dfl # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
def kpts_decode(self, anchor_points, pred_kpts):
"""Decodes predicted keypoints to image coordinates."""
y = pred_kpts.clone()
y[..., :2] *= 2.0
y[..., 0] += anchor_points[:, [0]] - 0.5
y[..., 1] += anchor_points[:, [1]] - 0.5
return y
class v8ClassificationLoss:
def __call__(self, preds, batch):
"""Compute the classification loss between predictions and true labels."""
loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / 64
loss_items = loss.detach()
return loss, loss_items

View File

@ -1,977 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Model validation metrics
"""
import math
import warnings
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
from ultralytics.yolo.utils import LOGGER, SimpleClass, TryExcept, plt_settings
OKS_SIGMA = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0
# Boxes
def box_area(box):
"""Return box area, where box shape is xyxy(4,n)."""
return (box[2] - box[0]) * (box[3] - box[1])
def bbox_ioa(box1, box2, eps=1e-7):
"""
Calculate the intersection over box2 area given box1 and box2. Boxes are in x1y1x2y2 format.
Args:
box1 (np.array): A numpy array of shape (n, 4) representing n bounding boxes.
box2 (np.array): A numpy array of shape (m, 4) representing m bounding boxes.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(np.array): A numpy array of shape (n, m) representing the intersection over box2 area.
"""
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
# Intersection area
inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \
(np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0)
# box2 area
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
# Intersection over box2 area
return inter_area / box2_area
def box_iou(box1, box2, eps=1e-7):
"""
Calculate intersection-over-union (IoU) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
Args:
box1 (torch.Tensor): A tensor of shape (N, 4) representing N bounding boxes.
box2 (torch.Tensor): A tensor of shape (M, 4) representing M bounding boxes.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2.
"""
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp_(0).prod(2)
# IoU = inter / (area1 + area2 - inter)
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
"""
Calculate Intersection over Union (IoU) of box1(1, 4) to box2(n, 4).
Args:
box1 (torch.Tensor): A tensor representing a single bounding box with shape (1, 4).
box2 (torch.Tensor): A tensor representing n bounding boxes with shape (n, 4).
xywh (bool, optional): If True, input boxes are in (x, y, w, h) format. If False, input boxes are in
(x1, y1, x2, y2) format. Defaults to True.
GIoU (bool, optional): If True, calculate Generalized IoU. Defaults to False.
DIoU (bool, optional): If True, calculate Distance IoU. Defaults to False.
CIoU (bool, optional): If True, calculate Complete IoU. Defaults to False.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(torch.Tensor): IoU, GIoU, DIoU, or CIoU values depending on the specified flags.
"""
# Get the coordinates of bounding boxes
if xywh: # transform from xywh to xyxy
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
else: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
# Intersection area
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * \
(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp_(0)
# Union Area
union = w1 * h1 + w2 * h2 - inter + eps
# IoU
iou = inter / union
if CIoU or DIoU or GIoU:
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha) # CIoU
return iou - rho2 / c2 # DIoU
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
return iou # IoU
def mask_iou(mask1, mask2, eps=1e-7):
"""
Calculate masks IoU.
Args:
mask1 (torch.Tensor): A tensor of shape (N, n) where N is the number of ground truth objects and n is the
product of image width and height.
mask2 (torch.Tensor): A tensor of shape (M, n) where M is the number of predicted objects and n is the
product of image width and height.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(torch.Tensor): A tensor of shape (N, M) representing masks IoU.
"""
intersection = torch.matmul(mask1, mask2.T).clamp_(0)
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
return intersection / (union + eps)
def kpt_iou(kpt1, kpt2, area, sigma, eps=1e-7):
"""
Calculate Object Keypoint Similarity (OKS).
Args:
kpt1 (torch.Tensor): A tensor of shape (N, 17, 3) representing ground truth keypoints.
kpt2 (torch.Tensor): A tensor of shape (M, 17, 3) representing predicted keypoints.
area (torch.Tensor): A tensor of shape (N,) representing areas from ground truth.
sigma (list): A list containing 17 values representing keypoint scales.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(torch.Tensor): A tensor of shape (N, M) representing keypoint similarities.
"""
d = (kpt1[:, None, :, 0] - kpt2[..., 0]) ** 2 + (kpt1[:, None, :, 1] - kpt2[..., 1]) ** 2 # (N, M, 17)
sigma = torch.tensor(sigma, device=kpt1.device, dtype=kpt1.dtype) # (17, )
kpt_mask = kpt1[..., 2] != 0 # (N, 17)
e = d / (2 * sigma) ** 2 / (area[:, None, None] + eps) / 2 # from cocoeval
# e = d / ((area[None, :, None] + eps) * sigma) ** 2 / 2 # from formula
return (torch.exp(-e) * kpt_mask[:, None]).sum(-1) / (kpt_mask.sum(-1)[:, None] + eps)
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
# return positive, negative label smoothing BCE targets
return 1.0 - 0.5 * eps, 0.5 * eps
class ConfusionMatrix:
"""
A class for calculating and updating a confusion matrix for object detection and classification tasks.
Attributes:
task (str): The type of task, either 'detect' or 'classify'.
matrix (np.array): The confusion matrix, with dimensions depending on the task.
nc (int): The number of classes.
conf (float): The confidence threshold for detections.
iou_thres (float): The Intersection over Union threshold.
"""
def __init__(self, nc, conf=0.25, iou_thres=0.45, task='detect'):
"""Initialize attributes for the YOLO model."""
self.task = task
self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == 'detect' else np.zeros((nc, nc))
self.nc = nc # number of classes
self.conf = conf
self.iou_thres = iou_thres
def process_cls_preds(self, preds, targets):
"""
Update confusion matrix for classification task
Args:
preds (Array[N, min(nc,5)]): Predicted class labels.
targets (Array[N, 1]): Ground truth class labels.
"""
preds, targets = torch.cat(preds)[:, 0], torch.cat(targets)
for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()):
self.matrix[p][t] += 1
def process_batch(self, detections, labels):
"""
Update confusion matrix for object detection task.
Args:
detections (Array[N, 6]): Detected bounding boxes and their associated information.
Each row should contain (x1, y1, x2, y2, conf, class).
labels (Array[M, 5]): Ground truth bounding boxes and their associated class labels.
Each row should contain (class, x1, y1, x2, y2).
"""
if detections is None:
gt_classes = labels.int()
for gc in gt_classes:
self.matrix[self.nc, gc] += 1 # background FN
return
detections = detections[detections[:, 4] > self.conf]
gt_classes = labels[:, 0].int()
detection_classes = detections[:, 5].int()
iou = box_iou(labels[:, 1:], detections[:, :4])
x = torch.where(iou > self.iou_thres)
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
else:
matches = np.zeros((0, 3))
n = matches.shape[0] > 0
m0, m1, _ = matches.transpose().astype(int)
for i, gc in enumerate(gt_classes):
j = m0 == i
if n and sum(j) == 1:
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
else:
self.matrix[self.nc, gc] += 1 # true background
if n:
for i, dc in enumerate(detection_classes):
if not any(m1 == i):
self.matrix[dc, self.nc] += 1 # predicted background
def matrix(self):
"""Returns the confusion matrix."""
return self.matrix
def tp_fp(self):
"""Returns true positives and false positives."""
tp = self.matrix.diagonal() # true positives
fp = self.matrix.sum(1) - tp # false positives
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
return (tp[:-1], fp[:-1]) if self.task == 'detect' else (tp, fp) # remove background class if task=detect
@TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
@plt_settings()
def plot(self, normalize=True, save_dir='', names=(), on_plot=None):
"""
Plot the confusion matrix using seaborn and save it to a file.
Args:
normalize (bool): Whether to normalize the confusion matrix.
save_dir (str): Directory where the plot will be saved.
names (tuple): Names of classes, used as labels on the plot.
on_plot (func): An optional callback to pass plots path and data when they are rendered.
"""
import seaborn as sn
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
nc, nn = self.nc, len(names) # number of classes, names
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
ticklabels = (list(names) + ['background']) if labels else 'auto'
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
sn.heatmap(array,
ax=ax,
annot=nc < 30,
annot_kws={
'size': 8},
cmap='Blues',
fmt='.2f' if normalize else '.0f',
square=True,
vmin=0.0,
xticklabels=ticklabels,
yticklabels=ticklabels).set_facecolor((1, 1, 1))
title = 'Confusion Matrix' + ' Normalized' * normalize
ax.set_xlabel('True')
ax.set_ylabel('Predicted')
ax.set_title(title)
plot_fname = Path(save_dir) / f'{title.lower().replace(" ", "_")}.png'
fig.savefig(plot_fname, dpi=250)
plt.close(fig)
if on_plot:
on_plot(plot_fname)
def print(self):
"""
Print the confusion matrix to the console.
"""
for i in range(self.nc + 1):
LOGGER.info(' '.join(map(str, self.matrix[i])))
def smooth(y, f=0.05):
"""Box filter of fraction f."""
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
p = np.ones(nf // 2) # ones padding
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
@plt_settings()
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=(), on_plot=None):
"""Plots a precision-recall curve."""
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
py = np.stack(py, axis=1)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py.T):
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
else:
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
ax.set_xlabel('Recall')
ax.set_ylabel('Precision')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
ax.set_title('Precision-Recall Curve')
fig.savefig(save_dir, dpi=250)
plt.close(fig)
if on_plot:
on_plot(save_dir)
@plt_settings()
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric', on_plot=None):
"""Plots a metric-confidence curve."""
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py):
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
else:
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
y = smooth(py.mean(0), 0.05)
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
ax.set_title(f'{ylabel}-Confidence Curve')
fig.savefig(save_dir, dpi=250)
plt.close(fig)
if on_plot:
on_plot(save_dir)
def compute_ap(recall, precision):
"""
Compute the average precision (AP) given the recall and precision curves.
Arguments:
recall (list): The recall curve.
precision (list): The precision curve.
Returns:
(float): Average precision.
(np.ndarray): Precision envelope curve.
(np.ndarray): Modified recall curve with sentinel values added at the beginning and end.
"""
# Append sentinel values to beginning and end
mrec = np.concatenate(([0.0], recall, [1.0]))
mpre = np.concatenate(([1.0], precision, [0.0]))
# Compute the precision envelope
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
# Integrate area under curve
method = 'interp' # methods: 'continuous', 'interp'
if method == 'interp':
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
else: # 'continuous'
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x-axis (recall) changes
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
return ap, mpre, mrec
def ap_per_class(tp,
conf,
pred_cls,
target_cls,
plot=False,
on_plot=None,
save_dir=Path(),
names=(),
eps=1e-16,
prefix=''):
"""
Computes the average precision per class for object detection evaluation.
Args:
tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False).
conf (np.ndarray): Array of confidence scores of the detections.
pred_cls (np.ndarray): Array of predicted classes of the detections.
target_cls (np.ndarray): Array of true classes of the detections.
plot (bool, optional): Whether to plot PR curves or not. Defaults to False.
on_plot (func, optional): A callback to pass plots path and data when they are rendered. Defaults to None.
save_dir (Path, optional): Directory to save the PR curves. Defaults to an empty path.
names (tuple, optional): Tuple of class names to plot PR curves. Defaults to an empty tuple.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-16.
prefix (str, optional): A prefix string for saving the plot files. Defaults to an empty string.
Returns:
(tuple): A tuple of six arrays and one array of unique classes, where:
tp (np.ndarray): True positive counts for each class.
fp (np.ndarray): False positive counts for each class.
p (np.ndarray): Precision values at each confidence threshold.
r (np.ndarray): Recall values at each confidence threshold.
f1 (np.ndarray): F1-score values at each confidence threshold.
ap (np.ndarray): Average precision for each class at different IoU thresholds.
unique_classes (np.ndarray): An array of unique classes that have data.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes, nt = np.unique(target_cls, return_counts=True)
nc = unique_classes.shape[0] # number of classes, number of detections
# Create Precision-Recall curve and compute AP for each class
px, py = np.linspace(0, 1, 1000), [] # for plotting
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
for ci, c in enumerate(unique_classes):
i = pred_cls == c
n_l = nt[ci] # number of labels
n_p = i.sum() # number of predictions
if n_p == 0 or n_l == 0:
continue
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum(0)
tpc = tp[i].cumsum(0)
# Recall
recall = tpc / (n_l + eps) # recall curve
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
# Precision
precision = tpc / (tpc + fpc) # precision curve
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
# AP from recall-precision curve
for j in range(tp.shape[1]):
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
if plot and j == 0:
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
# Compute F1 (harmonic mean of precision and recall)
f1 = 2 * p * r / (p + r + eps)
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
names = dict(enumerate(names)) # to dict
if plot:
plot_pr_curve(px, py, ap, save_dir / f'{prefix}PR_curve.png', names, on_plot=on_plot)
plot_mc_curve(px, f1, save_dir / f'{prefix}F1_curve.png', names, ylabel='F1', on_plot=on_plot)
plot_mc_curve(px, p, save_dir / f'{prefix}P_curve.png', names, ylabel='Precision', on_plot=on_plot)
plot_mc_curve(px, r, save_dir / f'{prefix}R_curve.png', names, ylabel='Recall', on_plot=on_plot)
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
p, r, f1 = p[:, i], r[:, i], f1[:, i]
tp = (r * nt).round() # true positives
fp = (tp / (p + eps) - tp).round() # false positives
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
class Metric(SimpleClass):
"""
Class for computing evaluation metrics for YOLOv8 model.
Attributes:
p (list): Precision for each class. Shape: (nc,).
r (list): Recall for each class. Shape: (nc,).
f1 (list): F1 score for each class. Shape: (nc,).
all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).
ap_class_index (list): Index of class for each AP score. Shape: (nc,).
nc (int): Number of classes.
Methods:
ap50(): AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
ap(): AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
mp(): Mean precision of all classes. Returns: Float.
mr(): Mean recall of all classes. Returns: Float.
map50(): Mean AP at IoU threshold of 0.5 for all classes. Returns: Float.
map75(): Mean AP at IoU threshold of 0.75 for all classes. Returns: Float.
map(): Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float.
mean_results(): Mean of results, returns mp, mr, map50, map.
class_result(i): Class-aware result, returns p[i], r[i], ap50[i], ap[i].
maps(): mAP of each class. Returns: Array of mAP scores, shape: (nc,).
fitness(): Model fitness as a weighted combination of metrics. Returns: Float.
update(results): Update metric attributes with new evaluation results.
"""
def __init__(self) -> None:
self.p = [] # (nc, )
self.r = [] # (nc, )
self.f1 = [] # (nc, )
self.all_ap = [] # (nc, 10)
self.ap_class_index = [] # (nc, )
self.nc = 0
@property
def ap50(self):
"""
Returns the Average Precision (AP) at an IoU threshold of 0.5 for all classes.
Returns:
(np.ndarray, list): Array of shape (nc,) with AP50 values per class, or an empty list if not available.
"""
return self.all_ap[:, 0] if len(self.all_ap) else []
@property
def ap(self):
"""
Returns the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes.
Returns:
(np.ndarray, list): Array of shape (nc,) with AP50-95 values per class, or an empty list if not available.
"""
return self.all_ap.mean(1) if len(self.all_ap) else []
@property
def mp(self):
"""
Returns the Mean Precision of all classes.
Returns:
(float): The mean precision of all classes.
"""
return self.p.mean() if len(self.p) else 0.0
@property
def mr(self):
"""
Returns the Mean Recall of all classes.
Returns:
(float): The mean recall of all classes.
"""
return self.r.mean() if len(self.r) else 0.0
@property
def map50(self):
"""
Returns the mean Average Precision (mAP) at an IoU threshold of 0.5.
Returns:
(float): The mAP50 at an IoU threshold of 0.5.
"""
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
@property
def map75(self):
"""
Returns the mean Average Precision (mAP) at an IoU threshold of 0.75.
Returns:
(float): The mAP50 at an IoU threshold of 0.75.
"""
return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0
@property
def map(self):
"""
Returns the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
Returns:
(float): The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
"""
return self.all_ap.mean() if len(self.all_ap) else 0.0
def mean_results(self):
"""Mean of results, return mp, mr, map50, map."""
return [self.mp, self.mr, self.map50, self.map]
def class_result(self, i):
"""class-aware result, return p[i], r[i], ap50[i], ap[i]."""
return self.p[i], self.r[i], self.ap50[i], self.ap[i]
@property
def maps(self):
"""mAP of each class."""
maps = np.zeros(self.nc) + self.map
for i, c in enumerate(self.ap_class_index):
maps[c] = self.ap[i]
return maps
def fitness(self):
"""Model fitness as a weighted combination of metrics."""
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (np.array(self.mean_results()) * w).sum()
def update(self, results):
"""
Args:
results (tuple): A tuple of (p, r, ap, f1, ap_class)
"""
self.p, self.r, self.f1, self.all_ap, self.ap_class_index = results
class DetMetrics(SimpleClass):
"""
This class is a utility class for computing detection metrics such as precision, recall, and mean average precision
(mAP) of an object detection model.
Args:
save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory.
plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False.
on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
names (tuple of str): A tuple of strings that represents the names of the classes. Defaults to an empty tuple.
Attributes:
save_dir (Path): A path to the directory where the output plots will be saved.
plot (bool): A flag that indicates whether to plot the precision-recall curves for each class.
on_plot (func): An optional callback to pass plots path and data when they are rendered.
names (tuple of str): A tuple of strings that represents the names of the classes.
box (Metric): An instance of the Metric class for storing the results of the detection metrics.
speed (dict): A dictionary for storing the execution time of different parts of the detection process.
Methods:
process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions.
keys: Returns a list of keys for accessing the computed detection metrics.
mean_results: Returns a list of mean values for the computed detection metrics.
class_result(i): Returns a list of values for the computed detection metrics for a specific class.
maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds.
fitness: Computes the fitness score based on the computed detection metrics.
ap_class_index: Returns a list of class indices sorted by their average precision (AP) values.
results_dict: Returns a dictionary that maps detection metric keys to their computed values.
"""
def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None:
self.save_dir = save_dir
self.plot = plot
self.on_plot = on_plot
self.names = names
self.box = Metric()
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
def process(self, tp, conf, pred_cls, target_cls):
"""Process predicted results for object detection and update metrics."""
results = ap_per_class(tp,
conf,
pred_cls,
target_cls,
plot=self.plot,
save_dir=self.save_dir,
names=self.names,
on_plot=self.on_plot)[2:]
self.box.nc = len(self.names)
self.box.update(results)
@property
def keys(self):
"""Returns a list of keys for accessing specific metrics."""
return ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']
def mean_results(self):
"""Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95."""
return self.box.mean_results()
def class_result(self, i):
"""Return the result of evaluating the performance of an object detection model on a specific class."""
return self.box.class_result(i)
@property
def maps(self):
"""Returns mean Average Precision (mAP) scores per class."""
return self.box.maps
@property
def fitness(self):
"""Returns the fitness of box object."""
return self.box.fitness()
@property
def ap_class_index(self):
"""Returns the average precision index per class."""
return self.box.ap_class_index
@property
def results_dict(self):
"""Returns dictionary of computed performance metrics and statistics."""
return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness]))
class SegmentMetrics(SimpleClass):
"""
Calculates and aggregates detection and segmentation metrics over a given set of classes.
Args:
save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
plot (bool): Whether to save the detection and segmentation plots. Default is False.
on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
names (list): List of class names. Default is an empty list.
Attributes:
save_dir (Path): Path to the directory where the output plots should be saved.
plot (bool): Whether to save the detection and segmentation plots.
on_plot (func): An optional callback to pass plots path and data when they are rendered.
names (list): List of class names.
box (Metric): An instance of the Metric class to calculate box detection metrics.
seg (Metric): An instance of the Metric class to calculate mask segmentation metrics.
speed (dict): Dictionary to store the time taken in different phases of inference.
Methods:
process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
class_result(i): Returns the detection and segmentation metrics of class `i`.
maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
fitness: Returns the fitness scores, which are a single weighted combination of metrics.
ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
"""
def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None:
self.save_dir = save_dir
self.plot = plot
self.on_plot = on_plot
self.names = names
self.box = Metric()
self.seg = Metric()
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
def process(self, tp_b, tp_m, conf, pred_cls, target_cls):
"""
Processes the detection and segmentation metrics over the given set of predictions.
Args:
tp_b (list): List of True Positive boxes.
tp_m (list): List of True Positive masks.
conf (list): List of confidence scores.
pred_cls (list): List of predicted classes.
target_cls (list): List of target classes.
"""
results_mask = ap_per_class(tp_m,
conf,
pred_cls,
target_cls,
plot=self.plot,
on_plot=self.on_plot,
save_dir=self.save_dir,
names=self.names,
prefix='Mask')[2:]
self.seg.nc = len(self.names)
self.seg.update(results_mask)
results_box = ap_per_class(tp_b,
conf,
pred_cls,
target_cls,
plot=self.plot,
on_plot=self.on_plot,
save_dir=self.save_dir,
names=self.names,
prefix='Box')[2:]
self.box.nc = len(self.names)
self.box.update(results_box)
@property
def keys(self):
"""Returns a list of keys for accessing metrics."""
return [
'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)',
'metrics/precision(M)', 'metrics/recall(M)', 'metrics/mAP50(M)', 'metrics/mAP50-95(M)']
def mean_results(self):
"""Return the mean metrics for bounding box and segmentation results."""
return self.box.mean_results() + self.seg.mean_results()
def class_result(self, i):
"""Returns classification results for a specified class index."""
return self.box.class_result(i) + self.seg.class_result(i)
@property
def maps(self):
"""Returns mAP scores for object detection and semantic segmentation models."""
return self.box.maps + self.seg.maps
@property
def fitness(self):
"""Get the fitness score for both segmentation and bounding box models."""
return self.seg.fitness() + self.box.fitness()
@property
def ap_class_index(self):
"""Boxes and masks have the same ap_class_index."""
return self.box.ap_class_index
@property
def results_dict(self):
"""Returns results of object detection model for evaluation."""
return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness]))
class PoseMetrics(SegmentMetrics):
"""
Calculates and aggregates detection and pose metrics over a given set of classes.
Args:
save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
plot (bool): Whether to save the detection and segmentation plots. Default is False.
on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
names (list): List of class names. Default is an empty list.
Attributes:
save_dir (Path): Path to the directory where the output plots should be saved.
plot (bool): Whether to save the detection and segmentation plots.
on_plot (func): An optional callback to pass plots path and data when they are rendered.
names (list): List of class names.
box (Metric): An instance of the Metric class to calculate box detection metrics.
pose (Metric): An instance of the Metric class to calculate mask segmentation metrics.
speed (dict): Dictionary to store the time taken in different phases of inference.
Methods:
process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
class_result(i): Returns the detection and segmentation metrics of class `i`.
maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
fitness: Returns the fitness scores, which are a single weighted combination of metrics.
ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
"""
def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None:
super().__init__(save_dir, plot, names)
self.save_dir = save_dir
self.plot = plot
self.on_plot = on_plot
self.names = names
self.box = Metric()
self.pose = Metric()
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
def __getattr__(self, attr):
"""Raises an AttributeError if an invalid attribute is accessed."""
name = self.__class__.__name__
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
def process(self, tp_b, tp_p, conf, pred_cls, target_cls):
"""
Processes the detection and pose metrics over the given set of predictions.
Args:
tp_b (list): List of True Positive boxes.
tp_p (list): List of True Positive keypoints.
conf (list): List of confidence scores.
pred_cls (list): List of predicted classes.
target_cls (list): List of target classes.
"""
results_pose = ap_per_class(tp_p,
conf,
pred_cls,
target_cls,
plot=self.plot,
on_plot=self.on_plot,
save_dir=self.save_dir,
names=self.names,
prefix='Pose')[2:]
self.pose.nc = len(self.names)
self.pose.update(results_pose)
results_box = ap_per_class(tp_b,
conf,
pred_cls,
target_cls,
plot=self.plot,
on_plot=self.on_plot,
save_dir=self.save_dir,
names=self.names,
prefix='Box')[2:]
self.box.nc = len(self.names)
self.box.update(results_box)
@property
def keys(self):
"""Returns list of evaluation metric keys."""
return [
'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)',
'metrics/precision(P)', 'metrics/recall(P)', 'metrics/mAP50(P)', 'metrics/mAP50-95(P)']
def mean_results(self):
"""Return the mean results of box and pose."""
return self.box.mean_results() + self.pose.mean_results()
def class_result(self, i):
"""Return the class-wise detection results for a specific class i."""
return self.box.class_result(i) + self.pose.class_result(i)
@property
def maps(self):
"""Returns the mean average precision (mAP) per class for both box and pose detections."""
return self.box.maps + self.pose.maps
@property
def fitness(self):
"""Computes classification metrics and speed using the `targets` and `pred` inputs."""
return self.pose.fitness() + self.box.fitness()
class ClassifyMetrics(SimpleClass):
"""
Class for computing classification metrics including top-1 and top-5 accuracy.
Attributes:
top1 (float): The top-1 accuracy.
top5 (float): The top-5 accuracy.
speed (Dict[str, float]): A dictionary containing the time taken for each step in the pipeline.
Properties:
fitness (float): The fitness of the model, which is equal to top-5 accuracy.
results_dict (Dict[str, Union[float, str]]): A dictionary containing the classification metrics and fitness.
keys (List[str]): A list of keys for the results_dict.
Methods:
process(targets, pred): Processes the targets and predictions to compute classification metrics.
"""
def __init__(self) -> None:
self.top1 = 0
self.top5 = 0
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
def process(self, targets, pred):
"""Target classes and predicted classes."""
pred, targets = torch.cat(pred), torch.cat(targets)
correct = (targets[:, None] == pred).float()
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
self.top1, self.top5 = acc.mean(0).tolist()
@property
def fitness(self):
"""Returns top-5 accuracy as fitness score."""
return self.top5
@property
def results_dict(self):
"""Returns a dictionary with model's performance metrics and fitness score."""
return dict(zip(self.keys + ['fitness'], [self.top1, self.top5, self.fitness]))
@property
def keys(self):
"""Returns a list of keys for the results_dict property."""
return ['metrics/accuracy_top1', 'metrics/accuracy_top5']

View File

@ -1,739 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import math
import re
import time
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torchvision
from ultralytics.yolo.utils import LOGGER
from .metrics import box_iou
class Profile(contextlib.ContextDecorator):
"""
YOLOv8 Profile class.
Usage: as a decorator with @Profile() or as a context manager with 'with Profile():'
"""
def __init__(self, t=0.0):
"""
Initialize the Profile class.
Args:
t (float): Initial time. Defaults to 0.0.
"""
self.t = t
self.cuda = torch.cuda.is_available()
def __enter__(self):
"""
Start timing.
"""
self.start = self.time()
return self
def __exit__(self, type, value, traceback):
"""
Stop timing.
"""
self.dt = self.time() - self.start # delta-time
self.t += self.dt # accumulate dt
def time(self):
"""
Get current time.
"""
if self.cuda:
torch.cuda.synchronize()
return time.time()
def coco80_to_coco91_class(): #
"""
Converts 80-index (val2014) to 91-index (paper).
For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/.
Example:
a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
"""
return [
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
def segment2box(segment, width=640, height=640):
"""
Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
Args:
segment (torch.Tensor): the segment label
width (int): the width of the image. Defaults to 640
height (int): The height of the image. Defaults to 640
Returns:
(np.ndarray): the minimum and maximum x and y values of the segment.
"""
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
x, y = segment.T # segment xy
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
x, y, = x[inside], y[inside]
return np.array([x.min(), y.min(), x.max(), y.max()], dtype=segment.dtype) if any(x) else np.zeros(
4, dtype=segment.dtype) # xyxy
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None, padding=True):
"""
Rescales bounding boxes (in the format of xyxy) from the shape of the image they were originally specified in
(img1_shape) to the shape of a different image (img0_shape).
Args:
img1_shape (tuple): The shape of the image that the bounding boxes are for, in the format of (height, width).
boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2)
img0_shape (tuple): the shape of the target image, in the format of (height, width).
ratio_pad (tuple): a tuple of (ratio, pad) for scaling the boxes. If not provided, the ratio and pad will be
calculated based on the size difference between the two images.
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
rescaling.
Returns:
boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2)
"""
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1), round(
(img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1) # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
if padding:
boxes[..., [0, 2]] -= pad[0] # x padding
boxes[..., [1, 3]] -= pad[1] # y padding
boxes[..., :4] /= gain
clip_boxes(boxes, img0_shape)
return boxes
def make_divisible(x, divisor):
"""
Returns the nearest number that is divisible by the given divisor.
Args:
x (int): The number to make divisible.
divisor (int | torch.Tensor): The divisor.
Returns:
(int): The nearest number divisible by the divisor.
"""
if isinstance(divisor, torch.Tensor):
divisor = int(divisor.max()) # to int
return math.ceil(x / divisor) * divisor
def non_max_suppression(
prediction,
conf_thres=0.25,
iou_thres=0.45,
classes=None,
agnostic=False,
multi_label=False,
labels=(),
max_det=300,
nc=0, # number of classes (optional)
max_time_img=0.05,
max_nms=30000,
max_wh=7680,
):
"""
Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box.
Arguments:
prediction (torch.Tensor): A tensor of shape (batch_size, num_classes + 4 + num_masks, num_boxes)
containing the predicted boxes, classes, and masks. The tensor should be in the format
output by a model, such as YOLO.
conf_thres (float): The confidence threshold below which boxes will be filtered out.
Valid values are between 0.0 and 1.0.
iou_thres (float): The IoU threshold below which boxes will be filtered out during NMS.
Valid values are between 0.0 and 1.0.
classes (List[int]): A list of class indices to consider. If None, all classes will be considered.
agnostic (bool): If True, the model is agnostic to the number of classes, and all
classes will be considered as one.
multi_label (bool): If True, each box may have multiple labels.
labels (List[List[Union[int, float, torch.Tensor]]]): A list of lists, where each inner
list contains the apriori labels for a given image. The list should be in the format
output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2).
max_det (int): The maximum number of boxes to keep after NMS.
nc (int, optional): The number of classes output by the model. Any indices after this will be considered masks.
max_time_img (float): The maximum time (seconds) for processing one image.
max_nms (int): The maximum number of boxes into torchvision.ops.nms().
max_wh (int): The maximum box width and height in pixels
Returns:
(List[torch.Tensor]): A list of length batch_size, where each element is a tensor of
shape (num_boxes, 6 + num_masks) containing the kept boxes, with columns
(x1, y1, x2, y2, confidence, class, mask1, mask2, ...).
"""
# Checks
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
if isinstance(prediction, (list, tuple)): # YOLOv8 model in validation model, output = (inference_out, loss_out)
prediction = prediction[0] # select only inference output
device = prediction.device
mps = 'mps' in device.type # Apple MPS
if mps: # MPS not fully supported yet, convert tensors to CPU before NMS
prediction = prediction.cpu()
bs = prediction.shape[0] # batch size
nc = nc or (prediction.shape[1] - 4) # number of classes
nm = prediction.shape[1] - nc - 4
mi = 4 + nc # mask start index
xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates
# Settings
# min_wh = 2 # (pixels) minimum box width and height
time_limit = 0.5 + max_time_img * bs # seconds to quit after
redundant = True # require redundant detections
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
merge = False # use merge-NMS
prediction = prediction.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84)
prediction[..., :4] = xywh2xyxy(prediction[..., :4]) # xywh to xyxy
t = time.time()
output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# Cat apriori labels if autolabelling
if labels and len(labels[xi]):
lb = labels[xi]
v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
v[:, :4] = lb[:, 1:5] # box
v[range(len(lb)), lb[:, 0].long() + 4] = 1.0 # cls
x = torch.cat((x, v), 0)
# If none remain process next image
if not x.shape[0]:
continue
# Detections matrix nx6 (xyxy, conf, cls)
box, cls, mask = x.split((4, nc, nm), 1)
if multi_label:
i, j = torch.where(cls > conf_thres)
x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
else: # best class only
conf, j = cls.max(1, keepdim=True)
x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
# Filter by class
if classes is not None:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Apply finite constraint
# if not torch.isfinite(x).all():
# x = x[torch.isfinite(x).all(1)]
# Check shape
n = x.shape[0] # number of boxes
if not n: # no boxes
continue
if n > max_nms: # excess boxes
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence and remove excess boxes
# Batched NMS
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
i = i[:max_det] # limit detections
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
# Update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
weights = iou * scores[None] # box weights
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
if redundant:
i = i[iou.sum(1) > 1] # require redundancy
output[xi] = x[i]
if mps:
output[xi] = output[xi].to(device)
if (time.time() - t) > time_limit:
LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
break # time limit exceeded
return output
def clip_boxes(boxes, shape):
"""
It takes a list of bounding boxes and a shape (height, width) and clips the bounding boxes to the
shape
Args:
boxes (torch.Tensor): the bounding boxes to clip
shape (tuple): the shape of the image
"""
if isinstance(boxes, torch.Tensor): # faster individually
boxes[..., 0].clamp_(0, shape[1]) # x1
boxes[..., 1].clamp_(0, shape[0]) # y1
boxes[..., 2].clamp_(0, shape[1]) # x2
boxes[..., 3].clamp_(0, shape[0]) # y2
else: # np.array (faster grouped)
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
def clip_coords(coords, shape):
"""
Clip line coordinates to the image boundaries.
Args:
coords (torch.Tensor | numpy.ndarray): A list of line coordinates.
shape (tuple): A tuple of integers representing the size of the image in the format (height, width).
Returns:
(None): The function modifies the input `coordinates` in place, by clipping each coordinate to the image boundaries.
"""
if isinstance(coords, torch.Tensor): # faster individually
coords[..., 0].clamp_(0, shape[1]) # x
coords[..., 1].clamp_(0, shape[0]) # y
else: # np.array (faster grouped)
coords[..., 0] = coords[..., 0].clip(0, shape[1]) # x
coords[..., 1] = coords[..., 1].clip(0, shape[0]) # y
def scale_image(masks, im0_shape, ratio_pad=None):
"""
Takes a mask, and resizes it to the original image size
Args:
masks (torch.Tensor): resized and padded masks/images, [h, w, num]/[h, w, 3].
im0_shape (tuple): the original image shape
ratio_pad (tuple): the ratio of the padding to the original image.
Returns:
masks (torch.Tensor): The masks that are being returned.
"""
# Rescale coordinates (xyxy) from im1_shape to im0_shape
im1_shape = masks.shape
if im1_shape[:2] == im0_shape[:2]:
return masks
if ratio_pad is None: # calculate from im0_shape
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
top, left = int(pad[1]), int(pad[0]) # y, x
bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
if len(masks.shape) < 2:
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
masks = masks[top:bottom, left:right]
# masks = masks.permute(2, 0, 1).contiguous()
# masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
# masks = masks.permute(1, 2, 0).contiguous()
masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
if len(masks.shape) == 2:
masks = masks[:, :, None]
return masks
def xyxy2xywh(x):
"""
Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format.
Args:
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center
y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center
y[..., 2] = x[..., 2] - x[..., 0] # width
y[..., 3] = x[..., 3] - x[..., 1] # height
return y
def xywh2xyxy(x):
"""
Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format where (x1, y1) is the
top-left corner and (x2, y2) is the bottom-right corner.
Args:
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x, y, width, height) format.
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x
y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y
return y
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
"""
Convert normalized bounding box coordinates to pixel coordinates.
Args:
x (np.ndarray | torch.Tensor): The bounding box coordinates.
w (int): Width of the image. Defaults to 640
h (int): Height of the image. Defaults to 640
padw (int): Padding width. Defaults to 0
padh (int): Padding height. Defaults to 0
Returns:
y (np.ndarray | torch.Tensor): The coordinates of the bounding box in the format [x1, y1, x2, y2] where
x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x
y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y
return y
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
"""
Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height, normalized) format.
x, y, width and height are normalized to image dimensions
Args:
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
w (int): The width of the image. Defaults to 640
h (int): The height of the image. Defaults to 640
clip (bool): If True, the boxes will be clipped to the image boundaries. Defaults to False
eps (float): The minimum value of the box's width and height. Defaults to 0.0
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format
"""
if clip:
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width
y[..., 3] = (x[..., 3] - x[..., 1]) / h # height
return y
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
"""
Convert normalized coordinates to pixel coordinates of shape (n,2)
Args:
x (np.ndarray | torch.Tensor): The input tensor of normalized bounding box coordinates
w (int): The width of the image. Defaults to 640
h (int): The height of the image. Defaults to 640
padw (int): The width of the padding. Defaults to 0
padh (int): The height of the padding. Defaults to 0
Returns:
y (np.ndarray | torch.Tensor): The x and y coordinates of the top left corner of the bounding box
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = w * x[..., 0] + padw # top left x
y[..., 1] = h * x[..., 1] + padh # top left y
return y
def xywh2ltwh(x):
"""
Convert the bounding box format from [x, y, w, h] to [x1, y1, w, h], where x1, y1 are the top-left coordinates.
Args:
x (np.ndarray | torch.Tensor): The input tensor with the bounding box coordinates in the xywh format
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
return y
def xyxy2ltwh(x):
"""
Convert nx4 bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h], where xy1=top-left, xy2=bottom-right
Args:
x (np.ndarray | torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format
Returns:
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 2] = x[:, 2] - x[:, 0] # width
y[:, 3] = x[:, 3] - x[:, 1] # height
return y
def ltwh2xywh(x):
"""
Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center
Args:
x (torch.Tensor): the input tensor
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] + x[:, 2] / 2 # center x
y[:, 1] = x[:, 1] + x[:, 3] / 2 # center y
return y
def ltwh2xyxy(x):
"""
It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
Args:
x (np.ndarray | torch.Tensor): the input image
Returns:
y (np.ndarray | torch.Tensor): the xyxy coordinates of the bounding boxes.
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 2] = x[:, 2] + x[:, 0] # width
y[:, 3] = x[:, 3] + x[:, 1] # height
return y
def segments2boxes(segments):
"""
It converts segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
Args:
segments (list): list of segments, each segment is a list of points, each point is a list of x, y coordinates
Returns:
(np.ndarray): the xywh coordinates of the bounding boxes.
"""
boxes = []
for s in segments:
x, y = s.T # segment xy
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
return xyxy2xywh(np.array(boxes)) # cls, xywh
def resample_segments(segments, n=1000):
"""
Inputs a list of segments (n,2) and returns a list of segments (n,2) up-sampled to n points each.
Args:
segments (list): a list of (n,2) arrays, where n is the number of points in the segment.
n (int): number of points to resample the segment to. Defaults to 1000
Returns:
segments (list): the resampled segments.
"""
for i, s in enumerate(segments):
s = np.concatenate((s, s[0:1, :]), axis=0)
x = np.linspace(0, len(s) - 1, n)
xp = np.arange(len(s))
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)],
dtype=np.float32).reshape(2, -1).T # segment xy
return segments
def crop_mask(masks, boxes):
"""
It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box
Args:
masks (torch.Tensor): [n, h, w] tensor of masks
boxes (torch.Tensor): [n, 4] tensor of bbox coordinates in relative point form
Returns:
(torch.Tensor): The masks are being cropped to the bounding box.
"""
n, h, w = masks.shape
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(n,1,1)
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,1,w)
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(1,h,1)
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
def process_mask_upsample(protos, masks_in, bboxes, shape):
"""
It takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher
quality but is slower.
Args:
protos (torch.Tensor): [mask_dim, mask_h, mask_w]
masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
bboxes (torch.Tensor): [n, 4], n is number of masks after nms
shape (tuple): the size of the input image (h,w)
Returns:
(torch.Tensor): The upsampled masks.
"""
c, mh, mw = protos.shape # CHW
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
masks = crop_mask(masks, bboxes) # CHW
return masks.gt_(0.5)
def process_mask(protos, masks_in, bboxes, shape, upsample=False):
"""
Apply masks to bounding boxes using the output of the mask head.
Args:
protos (torch.Tensor): A tensor of shape [mask_dim, mask_h, mask_w].
masks_in (torch.Tensor): A tensor of shape [n, mask_dim], where n is the number of masks after NMS.
bboxes (torch.Tensor): A tensor of shape [n, 4], where n is the number of masks after NMS.
shape (tuple): A tuple of integers representing the size of the input image in the format (h, w).
upsample (bool): A flag to indicate whether to upsample the mask to the original image size. Default is False.
Returns:
(torch.Tensor): A binary mask tensor of shape [n, h, w], where n is the number of masks after NMS, and h and w
are the height and width of the input image. The mask is applied to the bounding boxes.
"""
c, mh, mw = protos.shape # CHW
ih, iw = shape
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
downsampled_bboxes = bboxes.clone()
downsampled_bboxes[:, 0] *= mw / iw
downsampled_bboxes[:, 2] *= mw / iw
downsampled_bboxes[:, 3] *= mh / ih
downsampled_bboxes[:, 1] *= mh / ih
masks = crop_mask(masks, downsampled_bboxes) # CHW
if upsample:
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
return masks.gt_(0.5)
def process_mask_native(protos, masks_in, bboxes, shape):
"""
It takes the output of the mask head, and crops it after upsampling to the bounding boxes.
Args:
protos (torch.Tensor): [mask_dim, mask_h, mask_w]
masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
bboxes (torch.Tensor): [n, 4], n is number of masks after nms
shape (tuple): the size of the input image (h,w)
Returns:
masks (torch.Tensor): The returned masks with dimensions [h, w, n]
"""
c, mh, mw = protos.shape # CHW
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
masks = scale_masks(masks[None], shape)[0] # CHW
masks = crop_mask(masks, bboxes) # CHW
return masks.gt_(0.5)
def scale_masks(masks, shape, padding=True):
"""
Rescale segment masks to shape.
Args:
masks (torch.Tensor): (N, C, H, W).
shape (tuple): Height and width.
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
rescaling.
"""
mh, mw = masks.shape[2:]
gain = min(mh / shape[0], mw / shape[1]) # gain = old / new
pad = [mw - shape[1] * gain, mh - shape[0] * gain] # wh padding
if padding:
pad[0] /= 2
pad[1] /= 2
top, left = (int(pad[1]), int(pad[0])) if padding else (0, 0) # y, x
bottom, right = (int(mh - pad[1]), int(mw - pad[0]))
masks = masks[..., top:bottom, left:right]
masks = F.interpolate(masks, shape, mode='bilinear', align_corners=False) # NCHW
return masks
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None, normalize=False, padding=True):
"""
Rescale segment coordinates (xyxy) from img1_shape to img0_shape
Args:
img1_shape (tuple): The shape of the image that the coords are from.
coords (torch.Tensor): the coords to be scaled
img0_shape (tuple): the shape of the image that the segmentation is being applied to
ratio_pad (tuple): the ratio of the image size to the padded image size.
normalize (bool): If True, the coordinates will be normalized to the range [0, 1]. Defaults to False
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
rescaling.
Returns:
coords (torch.Tensor): the segmented image.
"""
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
if padding:
coords[..., 0] -= pad[0] # x padding
coords[..., 1] -= pad[1] # y padding
coords[..., 0] /= gain
coords[..., 1] /= gain
clip_coords(coords, img0_shape)
if normalize:
coords[..., 0] /= img0_shape[1] # width
coords[..., 1] /= img0_shape[0] # height
return coords
def masks2segments(masks, strategy='largest'):
"""
It takes a list of masks(n,h,w) and returns a list of segments(n,xy)
Args:
masks (torch.Tensor): the output of the model, which is a tensor of shape (batch_size, 160, 160)
strategy (str): 'concat' or 'largest'. Defaults to largest
Returns:
segments (List): list of segment masks
"""
segments = []
for x in masks.int().cpu().numpy().astype('uint8'):
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
if c:
if strategy == 'concat': # concatenate all segments
c = np.concatenate([x.reshape(-1, 2) for x in c])
elif strategy == 'largest': # select largest segment
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
else:
c = np.zeros((0, 2)) # no segments found
segments.append(c.astype('float32'))
return segments
def clean_str(s):
"""
Cleans a string by replacing special characters with underscore _
Args:
s (str): a string needing special characters replaced
Returns:
(str): a string with special characters replaced by an underscore _
"""
return re.sub(pattern='[|@#!¡·$€%&()=?¿^*;:,¨´><+]', repl='_', string=s)

View File

@ -1,45 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Monkey patches to update/extend functionality of existing functions
"""
from pathlib import Path
import cv2
import numpy as np
import torch
# OpenCV Multilanguage-friendly functions ------------------------------------------------------------------------------
_imshow = cv2.imshow # copy to avoid recursion errors
def imread(filename, flags=cv2.IMREAD_COLOR):
return cv2.imdecode(np.fromfile(filename, np.uint8), flags)
def imwrite(filename, img):
try:
cv2.imencode(Path(filename).suffix, img)[1].tofile(filename)
return True
except Exception:
return False
def imshow(path, im):
_imshow(path.encode('unicode_escape').decode(), im)
# PyTorch functions ----------------------------------------------------------------------------------------------------
_torch_save = torch.save # copy to avoid recursion errors
def torch_save(*args, **kwargs):
"""Use dill (if exists) to serialize the lambda functions where pickle does not do this."""
try:
import dill as pickle
except ImportError:
import pickle
if 'pickle_module' not in kwargs:
kwargs['pickle_module'] = pickle
return _torch_save(*args, **kwargs)

View File

@ -1,527 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import math
import warnings
from pathlib import Path
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from PIL import __version__ as pil_version
from scipy.ndimage import gaussian_filter1d
from ultralytics.yolo.utils import LOGGER, TryExcept, plt_settings, threaded
from .checks import check_font, check_version, is_ascii
from .files import increment_path
from .ops import clip_boxes, scale_image, xywh2xyxy, xyxy2xywh
class Colors:
"""Ultralytics color palette https://ultralytics.com/."""
def __init__(self):
"""Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
self.n = len(self.palette)
self.pose_palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255],
[153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255],
[255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102],
[51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]],
dtype=np.uint8)
def __call__(self, i, bgr=False):
"""Converts hex color codes to rgb values."""
c = self.palette[int(i) % self.n]
return (c[2], c[1], c[0]) if bgr else c
@staticmethod
def hex2rgb(h): # rgb order (PIL)
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
colors = Colors() # create instance for 'from utils.plots import colors'
class Annotator:
"""YOLOv8 Annotator for train/val mosaics and jpgs and detect/hub inference annotations."""
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
"""Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
self.pil = pil or non_ascii
if self.pil: # use PIL
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
self.draw = ImageDraw.Draw(self.im)
try:
font = check_font('Arial.Unicode.ttf' if non_ascii else font)
size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
self.font = ImageFont.truetype(str(font), size)
except Exception:
self.font = ImageFont.load_default()
# Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string)
if check_version(pil_version, '9.2.0'):
self.font.getsize = lambda x: self.font.getbbox(x)[2:4] # text width, height
else: # use cv2
self.im = im
self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
# Pose
self.skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9],
[8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]
self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
"""Add one xyxy box to image with label."""
if isinstance(box, torch.Tensor):
box = box.tolist()
if self.pil or not is_ascii(label):
self.draw.rectangle(box, width=self.lw, outline=color) # box
if label:
w, h = self.font.getsize(label) # text width, height
outside = box[1] - h >= 0 # label fits outside box
self.draw.rectangle(
(box[0], box[1] - h if outside else box[1], box[0] + w + 1,
box[1] + 1 if outside else box[1] + h + 1),
fill=color,
)
# self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
else: # cv2
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
if label:
tf = max(self.lw - 1, 1) # font thickness
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
outside = p1[1] - h >= 3
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
cv2.putText(self.im,
label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
0,
self.lw / 3,
txt_color,
thickness=tf,
lineType=cv2.LINE_AA)
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
"""Plot masks at once.
Args:
masks (tensor): predicted masks on cuda, shape: [n, h, w]
colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n]
im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1]
alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque
"""
if self.pil:
# Convert to numpy first
self.im = np.asarray(self.im).copy()
if len(masks) == 0:
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
if im_gpu.device != masks.device:
im_gpu = im_gpu.to(masks.device)
colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0 # shape(n,3)
colors = colors[:, None, None] # shape(n,1,1,3)
masks = masks.unsqueeze(3) # shape(n,h,w,1)
masks_color = masks * (colors * alpha) # shape(n,h,w,3)
inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
mcs = masks_color.max(dim=0).values # shape(n,h,w,3)
im_gpu = im_gpu.flip(dims=[0]) # flip channel
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
im_gpu = im_gpu * inv_alph_masks[-1] + mcs
im_mask = (im_gpu * 255)
im_mask_np = im_mask.byte().cpu().numpy()
self.im[:] = im_mask_np if retina_masks else scale_image(im_mask_np, self.im.shape)
if self.pil:
# Convert im back to PIL and update draw
self.fromarray(self.im)
def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True):
"""Plot keypoints on the image.
Args:
kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence).
shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width.
radius (int, optional): Radius of the drawn keypoints. Default is 5.
kpt_line (bool, optional): If True, the function will draw lines connecting keypoints
for human pose. Default is True.
Note: `kpt_line=True` currently only supports human pose plotting.
"""
if self.pil:
# Convert to numpy first
self.im = np.asarray(self.im).copy()
nkpt, ndim = kpts.shape
is_pose = nkpt == 17 and ndim == 3
kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting
for i, k in enumerate(kpts):
color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
x_coord, y_coord = k[0], k[1]
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
if len(k) == 3:
conf = k[2]
if conf < 0.5:
continue
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)
if kpt_line:
ndim = kpts.shape[-1]
for i, sk in enumerate(self.skeleton):
pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
if ndim == 3:
conf1 = kpts[(sk[0] - 1), 2]
conf2 = kpts[(sk[1] - 1), 2]
if conf1 < 0.5 or conf2 < 0.5:
continue
if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
continue
if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
continue
cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA)
if self.pil:
# Convert im back to PIL and update draw
self.fromarray(self.im)
def rectangle(self, xy, fill=None, outline=None, width=1):
"""Add rectangle to image (PIL-only)."""
self.draw.rectangle(xy, fill, outline, width)
def text(self, xy, text, txt_color=(255, 255, 255), anchor='top', box_style=False):
"""Adds text to an image using PIL or cv2."""
if anchor == 'bottom': # start y from font bottom
w, h = self.font.getsize(text) # text width, height
xy[1] += 1 - h
if self.pil:
if box_style:
w, h = self.font.getsize(text)
self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
# Using `txt_color` for background and draw fg with white color
txt_color = (255, 255, 255)
if '\n' in text:
lines = text.split('\n')
_, h = self.font.getsize(text)
for line in lines:
self.draw.text(xy, line, fill=txt_color, font=self.font)
xy[1] += h
else:
self.draw.text(xy, text, fill=txt_color, font=self.font)
else:
if box_style:
tf = max(self.lw - 1, 1) # font thickness
w, h = cv2.getTextSize(text, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
outside = xy[1] - h >= 3
p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3
cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA) # filled
# Using `txt_color` for background and draw fg with white color
txt_color = (255, 255, 255)
tf = max(self.lw - 1, 1) # font thickness
cv2.putText(self.im, text, xy, 0, self.lw / 3, txt_color, thickness=tf, lineType=cv2.LINE_AA)
def fromarray(self, im):
"""Update self.im from a numpy array."""
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
self.draw = ImageDraw.Draw(self.im)
def result(self):
"""Return annotated image as array."""
return np.asarray(self.im)
@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
@plt_settings()
def plot_labels(boxes, cls, names=(), save_dir=Path(''), on_plot=None):
"""Save and plot image with no axis or spines."""
import pandas as pd
import seaborn as sn
# Filter matplotlib>=3.7.2 warning
warnings.filterwarnings('ignore', category=UserWarning, message='The figure layout has changed to tight')
# Plot dataset labels
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
b = boxes.transpose() # classes, boxes
nc = int(cls.max() + 1) # number of classes
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
# Seaborn correlogram
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
plt.close()
# Matplotlib labels
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
with contextlib.suppress(Exception): # color histogram bars by class
[y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195
ax[0].set_ylabel('instances')
if 0 < len(names) < 30:
ax[0].set_xticks(range(len(names)))
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
else:
ax[0].set_xlabel('classes')
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
# Rectangles
boxes[:, 0:2] = 0.5 # center
boxes = xywh2xyxy(boxes) * 1000
img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255)
for cls, box in zip(cls[:500], boxes[:500]):
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
ax[1].imshow(img)
ax[1].axis('off')
for a in [0, 1, 2, 3]:
for s in ['top', 'right', 'left', 'bottom']:
ax[a].spines[s].set_visible(False)
fname = save_dir / 'labels.jpg'
plt.savefig(fname, dpi=200)
plt.close()
if on_plot:
on_plot(fname)
def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
"""Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop."""
b = xyxy2xywh(xyxy.view(-1, 4)) # boxes
if square:
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
xyxy = xywh2xyxy(b).long()
clip_boxes(xyxy, im.shape)
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
if save:
file.parent.mkdir(parents=True, exist_ok=True) # make directory
f = str(increment_path(file).with_suffix('.jpg'))
# cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
return crop
@threaded
def plot_images(images,
batch_idx,
cls,
bboxes=np.zeros(0, dtype=np.float32),
masks=np.zeros(0, dtype=np.uint8),
kpts=np.zeros((0, 51), dtype=np.float32),
paths=None,
fname='images.jpg',
names=None,
on_plot=None):
"""Plot image grid with labels."""
if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy()
if isinstance(cls, torch.Tensor):
cls = cls.cpu().numpy()
if isinstance(bboxes, torch.Tensor):
bboxes = bboxes.cpu().numpy()
if isinstance(masks, torch.Tensor):
masks = masks.cpu().numpy().astype(int)
if isinstance(kpts, torch.Tensor):
kpts = kpts.cpu().numpy()
if isinstance(batch_idx, torch.Tensor):
batch_idx = batch_idx.cpu().numpy()
max_size = 1920 # max image size
max_subplots = 16 # max image subplots, i.e. 4x4
bs, _, h, w = images.shape # batch size, _, height, width
bs = min(bs, max_subplots) # limit plot images
ns = np.ceil(bs ** 0.5) # number of subplots (square)
if np.max(images[0]) <= 1:
images *= 255 # de-normalise (optional)
# Build Image
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
for i, im in enumerate(images):
if i == max_subplots: # if last batch has fewer images than we expect
break
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
im = im.transpose(1, 2, 0)
mosaic[y:y + h, x:x + w, :] = im
# Resize (optional)
scale = max_size / ns / max(h, w)
if scale < 1:
h = math.ceil(scale * h)
w = math.ceil(scale * w)
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
# Annotate
fs = int((h + w) * ns * 0.01) # font size
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
for i in range(i + 1):
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
if paths:
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
if len(cls) > 0:
idx = batch_idx == i
classes = cls[idx].astype('int')
if len(bboxes):
boxes = xywh2xyxy(bboxes[idx, :4]).T
labels = bboxes.shape[1] == 4 # labels if no conf column
conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred)
if boxes.shape[1]:
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
boxes[[0, 2]] *= w # scale to pixels
boxes[[1, 3]] *= h
elif scale < 1: # absolute coords need scale if image scales
boxes *= scale
boxes[[0, 2]] += x
boxes[[1, 3]] += y
for j, box in enumerate(boxes.T.tolist()):
c = classes[j]
color = colors(c)
c = names.get(c, c) if names else c
if labels or conf[j] > 0.25: # 0.25 conf thresh
label = f'{c}' if labels else f'{c} {conf[j]:.1f}'
annotator.box_label(box, label, color=color)
elif len(classes):
for c in classes:
color = colors(c)
c = names.get(c, c) if names else c
annotator.text((x, y), f'{c}', txt_color=color, box_style=True)
# Plot keypoints
if len(kpts):
kpts_ = kpts[idx].copy()
if len(kpts_):
if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01: # if normalized with tolerance .01
kpts_[..., 0] *= w # scale to pixels
kpts_[..., 1] *= h
elif scale < 1: # absolute coords need scale if image scales
kpts_ *= scale
kpts_[..., 0] += x
kpts_[..., 1] += y
for j in range(len(kpts_)):
if labels or conf[j] > 0.25: # 0.25 conf thresh
annotator.kpts(kpts_[j])
# Plot masks
if len(masks):
if idx.shape[0] == masks.shape[0]: # overlap_masks=False
image_masks = masks[idx]
else: # overlap_masks=True
image_masks = masks[[i]] # (1, 640, 640)
nl = idx.sum()
index = np.arange(nl).reshape((nl, 1, 1)) + 1
image_masks = np.repeat(image_masks, nl, axis=0)
image_masks = np.where(image_masks == index, 1.0, 0.0)
im = np.asarray(annotator.im).copy()
for j, box in enumerate(boxes.T.tolist()):
if labels or conf[j] > 0.25: # 0.25 conf thresh
color = colors(classes[j])
mh, mw = image_masks[j].shape
if mh != h or mw != w:
mask = image_masks[j].astype(np.uint8)
mask = cv2.resize(mask, (w, h))
mask = mask.astype(bool)
else:
mask = image_masks[j].astype(bool)
with contextlib.suppress(Exception):
im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6
annotator.fromarray(im)
annotator.im.save(fname) # save
if on_plot:
on_plot(fname)
@plt_settings()
def plot_results(file='path/to/results.csv', dir='', segment=False, pose=False, classify=False, on_plot=None):
"""Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')."""
import pandas as pd
save_dir = Path(file).parent if file else Path(dir)
if classify:
fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
index = [1, 4, 2, 3]
elif segment:
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
elif pose:
fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True)
index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13]
else:
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
ax = ax.ravel()
files = list(save_dir.glob('results*.csv'))
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
for f in files:
try:
data = pd.read_csv(f)
s = [x.strip() for x in data.columns]
x = data.values[:, 0]
for i, j in enumerate(index):
y = data.values[:, j].astype('float')
# y[y == 0] = np.nan # don't show zero values
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) # actual results
ax[i].plot(x, gaussian_filter1d(y, sigma=3), ':', label='smooth', linewidth=2) # smoothing line
ax[i].set_title(s[j], fontsize=12)
# if j in [8, 9, 10]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
LOGGER.warning(f'WARNING: Plotting error for {f}: {e}')
ax[1].legend()
fname = save_dir / 'results.png'
fig.savefig(fname, dpi=200)
plt.close()
if on_plot:
on_plot(fname)
def output_to_target(output, max_det=300):
"""Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
targets = []
for i, o in enumerate(output):
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
j = torch.full((conf.shape[0], 1), i)
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
targets = torch.cat(targets, 0).numpy()
return targets[:, 0], targets[:, 1], targets[:, 2:]
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
"""
Visualize feature maps of a given model module during inference.
Args:
x (torch.Tensor): Features to be visualized.
module_type (str): Module type.
stage (int): Module stage within the model.
n (int, optional): Maximum number of feature maps to plot. Defaults to 32.
save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp').
"""
for m in ['Detect', 'Pose', 'Segment']:
if m in module_type:
return
batch, channels, height, width = x.shape # batch, channels, height, width
if height > 1 and width > 1:
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
n = min(n, channels) # number of plots
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
ax = ax.ravel()
plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
ax[i].axis('off')
LOGGER.info(f'Saving {f}... ({n}/{channels})')
plt.savefig(f, dpi=300, bbox_inches='tight')
plt.close()
np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save

View File

@ -1,276 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
import torch.nn as nn
from .checks import check_version
from .metrics import bbox_iou
TORCH_1_10 = check_version(torch.__version__, '1.10.0')
def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
"""select the positive anchor center in gt
Args:
xy_centers (Tensor): shape(h*w, 4)
gt_bboxes (Tensor): shape(b, n_boxes, 4)
Return:
(Tensor): shape(b, n_boxes, h*w)
"""
n_anchors = xy_centers.shape[0]
bs, n_boxes, _ = gt_bboxes.shape
lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2) # left-top, right-bottom
bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1)
# return (bbox_deltas.min(3)[0] > eps).to(gt_bboxes.dtype)
return bbox_deltas.amin(3).gt_(eps)
def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
"""if an anchor box is assigned to multiple gts,
the one with the highest iou will be selected.
Args:
mask_pos (Tensor): shape(b, n_max_boxes, h*w)
overlaps (Tensor): shape(b, n_max_boxes, h*w)
Return:
target_gt_idx (Tensor): shape(b, h*w)
fg_mask (Tensor): shape(b, h*w)
mask_pos (Tensor): shape(b, n_max_boxes, h*w)
"""
# (b, n_max_boxes, h*w) -> (b, h*w)
fg_mask = mask_pos.sum(-2)
if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes
mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1) # (b, n_max_boxes, h*w)
max_overlaps_idx = overlaps.argmax(1) # (b, h*w)
is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)
is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)
mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float() # (b, n_max_boxes, h*w)
fg_mask = mask_pos.sum(-2)
# Find each grid serve which gt(index)
target_gt_idx = mask_pos.argmax(-2) # (b, h*w)
return target_gt_idx, fg_mask, mask_pos
class TaskAlignedAssigner(nn.Module):
"""
A task-aligned assigner for object detection.
This class assigns ground-truth (gt) objects to anchors based on the task-aligned metric,
which combines both classification and localization information.
Attributes:
topk (int): The number of top candidates to consider.
num_classes (int): The number of object classes.
alpha (float): The alpha parameter for the classification component of the task-aligned metric.
beta (float): The beta parameter for the localization component of the task-aligned metric.
eps (float): A small value to prevent division by zero.
"""
def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9):
"""Initialize a TaskAlignedAssigner object with customizable hyperparameters."""
super().__init__()
self.topk = topk
self.num_classes = num_classes
self.bg_idx = num_classes
self.alpha = alpha
self.beta = beta
self.eps = eps
@torch.no_grad()
def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):
"""
Compute the task-aligned assignment.
Reference https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py
Args:
pd_scores (Tensor): shape(bs, num_total_anchors, num_classes)
pd_bboxes (Tensor): shape(bs, num_total_anchors, 4)
anc_points (Tensor): shape(num_total_anchors, 2)
gt_labels (Tensor): shape(bs, n_max_boxes, 1)
gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
mask_gt (Tensor): shape(bs, n_max_boxes, 1)
Returns:
target_labels (Tensor): shape(bs, num_total_anchors)
target_bboxes (Tensor): shape(bs, num_total_anchors, 4)
target_scores (Tensor): shape(bs, num_total_anchors, num_classes)
fg_mask (Tensor): shape(bs, num_total_anchors)
target_gt_idx (Tensor): shape(bs, num_total_anchors)
"""
self.bs = pd_scores.size(0)
self.n_max_boxes = gt_bboxes.size(1)
if self.n_max_boxes == 0:
device = gt_bboxes.device
return (torch.full_like(pd_scores[..., 0], self.bg_idx).to(device), torch.zeros_like(pd_bboxes).to(device),
torch.zeros_like(pd_scores).to(device), torch.zeros_like(pd_scores[..., 0]).to(device),
torch.zeros_like(pd_scores[..., 0]).to(device))
mask_pos, align_metric, overlaps = self.get_pos_mask(pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points,
mask_gt)
target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes)
# Assigned target
target_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask)
# Normalize
align_metric *= mask_pos
pos_align_metrics = align_metric.amax(axis=-1, keepdim=True) # b, max_num_obj
pos_overlaps = (overlaps * mask_pos).amax(axis=-1, keepdim=True) # b, max_num_obj
norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
target_scores = target_scores * norm_align_metric
return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx
def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):
"""Get in_gts mask, (b, max_num_obj, h*w)."""
mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)
# Get anchor_align metric, (b, max_num_obj, h*w)
align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt)
# Get topk_metric mask, (b, max_num_obj, h*w)
mask_topk = self.select_topk_candidates(align_metric, topk_mask=mask_gt.expand(-1, -1, self.topk).bool())
# Merge all mask to a final mask, (b, max_num_obj, h*w)
mask_pos = mask_topk * mask_in_gts * mask_gt
return mask_pos, align_metric, overlaps
def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_gt):
"""Compute alignment metric given predicted and ground truth bounding boxes."""
na = pd_bboxes.shape[-2]
mask_gt = mask_gt.bool() # b, max_num_obj, h*w
overlaps = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_bboxes.dtype, device=pd_bboxes.device)
bbox_scores = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_scores.dtype, device=pd_scores.device)
ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj
ind[0] = torch.arange(end=self.bs).view(-1, 1).expand(-1, self.n_max_boxes) # b, max_num_obj
ind[1] = gt_labels.squeeze(-1) # b, max_num_obj
# Get the scores of each grid for each gt cls
bbox_scores[mask_gt] = pd_scores[ind[0], :, ind[1]][mask_gt] # b, max_num_obj, h*w
# (b, max_num_obj, 1, 4), (b, 1, h*w, 4)
pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_gt]
gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_gt]
overlaps[mask_gt] = bbox_iou(gt_boxes, pd_boxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0)
align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
return align_metric, overlaps
def select_topk_candidates(self, metrics, largest=True, topk_mask=None):
"""
Select the top-k candidates based on the given metrics.
Args:
metrics (Tensor): A tensor of shape (b, max_num_obj, h*w), where b is the batch size,
max_num_obj is the maximum number of objects, and h*w represents the
total number of anchor points.
largest (bool): If True, select the largest values; otherwise, select the smallest values.
topk_mask (Tensor): An optional boolean tensor of shape (b, max_num_obj, topk), where
topk is the number of top candidates to consider. If not provided,
the top-k values are automatically computed based on the given metrics.
Returns:
(Tensor): A tensor of shape (b, max_num_obj, h*w) containing the selected top-k candidates.
"""
# (b, max_num_obj, topk)
topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest)
if topk_mask is None:
topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(topk_idxs)
# (b, max_num_obj, topk)
topk_idxs.masked_fill_(~topk_mask, 0)
# (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
count_tensor = torch.zeros(metrics.shape, dtype=torch.int8, device=topk_idxs.device)
ones = torch.ones_like(topk_idxs[:, :, :1], dtype=torch.int8, device=topk_idxs.device)
for k in range(self.topk):
# Expand topk_idxs for each value of k and add 1 at the specified positions
count_tensor.scatter_add_(-1, topk_idxs[:, :, k:k + 1], ones)
# count_tensor.scatter_add_(-1, topk_idxs, torch.ones_like(topk_idxs, dtype=torch.int8, device=topk_idxs.device))
# filter invalid bboxes
count_tensor.masked_fill_(count_tensor > 1, 0)
return count_tensor.to(metrics.dtype)
def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
"""
Compute target labels, target bounding boxes, and target scores for the positive anchor points.
Args:
gt_labels (Tensor): Ground truth labels of shape (b, max_num_obj, 1), where b is the
batch size and max_num_obj is the maximum number of objects.
gt_bboxes (Tensor): Ground truth bounding boxes of shape (b, max_num_obj, 4).
target_gt_idx (Tensor): Indices of the assigned ground truth objects for positive
anchor points, with shape (b, h*w), where h*w is the total
number of anchor points.
fg_mask (Tensor): A boolean tensor of shape (b, h*w) indicating the positive
(foreground) anchor points.
Returns:
(Tuple[Tensor, Tensor, Tensor]): A tuple containing the following tensors:
- target_labels (Tensor): Shape (b, h*w), containing the target labels for
positive anchor points.
- target_bboxes (Tensor): Shape (b, h*w, 4), containing the target bounding boxes
for positive anchor points.
- target_scores (Tensor): Shape (b, h*w, num_classes), containing the target scores
for positive anchor points, where num_classes is the number
of object classes.
"""
# Assigned target labels, (b, 1)
batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w)
target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w)
# Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w)
target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]
# Assigned target scores
target_labels.clamp_(0)
# 10x faster than F.one_hot()
target_scores = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.num_classes),
dtype=torch.int64,
device=target_labels.device) # (b, h*w, 80)
target_scores.scatter_(2, target_labels.unsqueeze(-1), 1)
fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
return target_labels, target_bboxes, target_scores
def make_anchors(feats, strides, grid_cell_offset=0.5):
"""Generate anchors from features."""
anchor_points, stride_tensor = [], []
assert feats is not None
dtype, device = feats[0].dtype, feats[0].device
for i, stride in enumerate(strides):
_, _, h, w = feats[i].shape
sx = torch.arange(end=w, device=device, dtype=dtype) + grid_cell_offset # shift x
sy = torch.arange(end=h, device=device, dtype=dtype) + grid_cell_offset # shift y
sy, sx = torch.meshgrid(sy, sx, indexing='ij') if TORCH_1_10 else torch.meshgrid(sy, sx)
anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2))
stride_tensor.append(torch.full((h * w, 1), stride, dtype=dtype, device=device))
return torch.cat(anchor_points), torch.cat(stride_tensor)
def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
"""Transform distance(ltrb) to box(xywh or xyxy)."""
lt, rb = distance.chunk(2, dim)
x1y1 = anchor_points - lt
x2y2 = anchor_points + rb
if xywh:
c_xy = (x1y1 + x2y2) / 2
wh = x2y2 - x1y1
return torch.cat((c_xy, wh), dim) # xywh bbox
return torch.cat((x1y1, x2y2), dim) # xyxy bbox
def bbox2dist(anchor_points, bbox, reg_max):
"""Transform bbox(xyxy) to dist(ltrb)."""
x1y1, x2y2 = bbox.chunk(2, -1)
return torch.cat((anchor_points - x1y1, x2y2 - anchor_points), -1).clamp_(0, reg_max - 0.01) # dist (lt, rb)

View File

@ -1,512 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import math
import os
import platform
import random
import time
from contextlib import contextmanager
from copy import deepcopy
from pathlib import Path
from typing import Union
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, __version__
from ultralytics.yolo.utils.checks import check_requirements, check_version
try:
import thop
except ImportError:
thop = None
TORCHVISION_0_10 = check_version(torchvision.__version__, '0.10.0')
TORCH_1_9 = check_version(torch.__version__, '1.9.0')
TORCH_1_11 = check_version(torch.__version__, '1.11.0')
TORCH_1_12 = check_version(torch.__version__, '1.12.0')
TORCH_2_0 = check_version(torch.__version__, minimum='2.0')
@contextmanager
def torch_distributed_zero_first(local_rank: int):
"""Decorator to make all processes in distributed training wait for each local_master to do something."""
initialized = torch.distributed.is_available() and torch.distributed.is_initialized()
if initialized and local_rank not in (-1, 0):
dist.barrier(device_ids=[local_rank])
yield
if initialized and local_rank == 0:
dist.barrier(device_ids=[0])
def smart_inference_mode():
"""Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator."""
def decorate(fn):
"""Applies appropriate torch decorator for inference mode based on torch version."""
return (torch.inference_mode if TORCH_1_9 else torch.no_grad)()(fn)
return decorate
def get_cpu_info():
"""Return a string with system CPU information, i.e. 'Apple M2'."""
check_requirements('py-cpuinfo')
import cpuinfo # noqa
return cpuinfo.get_cpu_info()['brand_raw'].replace('(R)', '').replace('CPU ', '').replace('@ ', '')
def select_device(device='', batch=0, newline=False, verbose=True):
"""Selects PyTorch Device. Options are device = None or 'cpu' or 0 or '0' or '0,1,2,3'."""
s = f'Ultralytics YOLOv{__version__} 🚀 Python-{platform.python_version()} torch-{torch.__version__} '
device = str(device).lower()
for remove in 'cuda:', 'none', '(', ')', '[', ']', "'", ' ':
device = device.replace(remove, '') # to string, 'cuda:0' -> '0' and '(0, 1)' -> '0,1'
cpu = device == 'cpu'
mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
if cpu or mps:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
elif device: # non-cpu device requested
if device == 'cuda':
device = '0'
visible = os.environ.get('CUDA_VISIBLE_DEVICES', None)
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
if not (torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', ''))):
LOGGER.info(s)
install = 'See https://pytorch.org/get-started/locally/ for up-to-date torch install instructions if no ' \
'CUDA devices are seen by torch.\n' if torch.cuda.device_count() == 0 else ''
raise ValueError(f"Invalid CUDA 'device={device}' requested."
f" Use 'device=cpu' or pass valid CUDA device(s) if available,"
f" i.e. 'device=0' or 'device=0,1,2,3' for Multi-GPU.\n"
f'\ntorch.cuda.is_available(): {torch.cuda.is_available()}'
f'\ntorch.cuda.device_count(): {torch.cuda.device_count()}'
f"\nos.environ['CUDA_VISIBLE_DEVICES']: {visible}\n"
f'{install}')
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
n = len(devices) # device count
if n > 1 and batch > 0 and batch % n != 0: # check batch_size is divisible by device_count
raise ValueError(f"'batch={batch}' must be a multiple of GPU count {n}. Try 'batch={batch // n * n}' or "
f"'batch={batch // n * n + n}', the nearest batch sizes evenly divisible by {n}.")
space = ' ' * (len(s) + 1)
for i, d in enumerate(devices):
p = torch.cuda.get_device_properties(i)
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
arg = 'cuda:0'
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available() and TORCH_2_0:
# Prefer MPS if available
s += f'MPS ({get_cpu_info()})\n'
arg = 'mps'
else: # revert to CPU
s += f'CPU ({get_cpu_info()})\n'
arg = 'cpu'
if verbose and RANK == -1:
LOGGER.info(s if newline else s.rstrip())
return torch.device(arg)
def time_sync():
"""PyTorch-accurate time."""
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
def fuse_conv_and_bn(conv, bn):
"""Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/."""
fusedconv = nn.Conv2d(conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
dilation=conv.dilation,
groups=conv.groups,
bias=True).requires_grad_(False).to(conv.weight.device)
# Prepare filters
w_conv = conv.weight.clone().view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
# Prepare spatial bias
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
return fusedconv
def fuse_deconv_and_bn(deconv, bn):
"""Fuse ConvTranspose2d() and BatchNorm2d() layers."""
fuseddconv = nn.ConvTranspose2d(deconv.in_channels,
deconv.out_channels,
kernel_size=deconv.kernel_size,
stride=deconv.stride,
padding=deconv.padding,
output_padding=deconv.output_padding,
dilation=deconv.dilation,
groups=deconv.groups,
bias=True).requires_grad_(False).to(deconv.weight.device)
# Prepare filters
w_deconv = deconv.weight.clone().view(deconv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fuseddconv.weight.copy_(torch.mm(w_bn, w_deconv).view(fuseddconv.weight.shape))
# Prepare spatial bias
b_conv = torch.zeros(deconv.weight.size(1), device=deconv.weight.device) if deconv.bias is None else deconv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fuseddconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
return fuseddconv
def model_info(model, detailed=False, verbose=True, imgsz=640):
"""Model information. imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320]."""
if not verbose:
return
n_p = get_num_params(model) # number of parameters
n_g = get_num_gradients(model) # number of gradients
n_l = len(list(model.modules())) # number of layers
if detailed:
LOGGER.info(
f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
LOGGER.info('%5g %40s %9s %12g %20s %10.3g %10.3g %10s' %
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std(), p.dtype))
flops = get_flops(model, imgsz)
fused = ' (fused)' if getattr(model, 'is_fused', lambda: False)() else ''
fs = f', {flops:.1f} GFLOPs' if flops else ''
yaml_file = getattr(model, 'yaml_file', '') or getattr(model, 'yaml', {}).get('yaml_file', '')
model_name = Path(yaml_file).stem.replace('yolo', 'YOLO') or 'Model'
LOGGER.info(f'{model_name} summary{fused}: {n_l} layers, {n_p} parameters, {n_g} gradients{fs}')
return n_l, n_p, n_g, flops
def get_num_params(model):
"""Return the total number of parameters in a YOLO model."""
return sum(x.numel() for x in model.parameters())
def get_num_gradients(model):
"""Return the total number of parameters with gradients in a YOLO model."""
return sum(x.numel() for x in model.parameters() if x.requires_grad)
def model_info_for_loggers(trainer):
"""
Return model info dict with useful model information.
Example for YOLOv8n:
{'model/parameters': 3151904,
'model/GFLOPs': 8.746,
'model/speed_ONNX(ms)': 41.244,
'model/speed_TensorRT(ms)': 3.211,
'model/speed_PyTorch(ms)': 18.755}
"""
if trainer.args.profile: # profile ONNX and TensorRT times
from ultralytics.yolo.utils.benchmarks import ProfileModels
results = ProfileModels([trainer.last], device=trainer.device).profile()[0]
results.pop('model/name')
else: # only return PyTorch times from most recent validation
results = {
'model/parameters': get_num_params(trainer.model),
'model/GFLOPs': round(get_flops(trainer.model), 3)}
results['model/speed_PyTorch(ms)'] = round(trainer.validator.speed['inference'], 3)
return results
def get_flops(model, imgsz=640):
"""Return a YOLO model's FLOPs."""
try:
model = de_parallel(model)
p = next(model.parameters())
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 if thop else 0 # stride GFLOPs
imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float
return flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs
except Exception:
return 0
def get_flops_with_torch_profiler(model, imgsz=640):
"""Compute model FLOPs (thop alternative)."""
model = de_parallel(model)
p = next(model.parameters())
stride = (max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32) * 2 # max stride
im = torch.zeros((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
with torch.profiler.profile(with_flops=True) as prof:
model(im)
flops = sum(x.flops for x in prof.key_averages()) / 1E9
imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float
flops = flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs
return flops
def initialize_weights(model):
"""Initialize model weights to random values."""
for m in model.modules():
t = type(m)
if t is nn.Conv2d:
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif t is nn.BatchNorm2d:
m.eps = 1e-3
m.momentum = 0.03
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
m.inplace = True
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
# Scales img(bs,3,y,x) by ratio constrained to gs-multiple
if ratio == 1.0:
return img
h, w = img.shape[2:]
s = (int(h * ratio), int(w * ratio)) # new size
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
if not same_shape: # pad/crop img
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
def make_divisible(x, divisor):
"""Returns nearest x divisible by divisor."""
if isinstance(divisor, torch.Tensor):
divisor = int(divisor.max()) # to int
return math.ceil(x / divisor) * divisor
def copy_attr(a, b, include=(), exclude=()):
"""Copies attributes from object 'b' to object 'a', with options to include/exclude certain attributes."""
for k, v in b.__dict__.items():
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
continue
else:
setattr(a, k, v)
def get_latest_opset():
"""Return second-most (for maturity) recently supported ONNX opset by this version of torch."""
return max(int(k[14:]) for k in vars(torch.onnx) if 'symbolic_opset' in k) - 1 # opset
def intersect_dicts(da, db, exclude=()):
"""Returns a dictionary of intersecting keys with matching shapes, excluding 'exclude' keys, using da values."""
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
def is_parallel(model):
"""Returns True if model is of type DP or DDP."""
return isinstance(model, (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel))
def de_parallel(model):
"""De-parallelize a model: returns single-GPU model if model is of type DP or DDP."""
return model.module if is_parallel(model) else model
def one_cycle(y1=0.0, y2=1.0, steps=100):
"""Returns a lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf."""
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
def init_seeds(seed=0, deterministic=False):
"""Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe
# torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
if deterministic:
if TORCH_2_0:
torch.use_deterministic_algorithms(True, warn_only=True) # warn if deterministic is not possible
torch.backends.cudnn.deterministic = True
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
os.environ['PYTHONHASHSEED'] = str(seed)
else:
LOGGER.warning('WARNING ⚠️ Upgrade to torch>=2.0.0 for deterministic training.')
else:
torch.use_deterministic_algorithms(False)
torch.backends.cudnn.deterministic = False
class ModelEMA:
"""Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
Keeps a moving average of everything in the model state_dict (parameters and buffers)
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
To disable EMA set the `enabled` attribute to `False`.
"""
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
"""Create EMA."""
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
self.updates = updates # number of EMA updates
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
for p in self.ema.parameters():
p.requires_grad_(False)
self.enabled = True
def update(self, model):
"""Update EMA parameters."""
if self.enabled:
self.updates += 1
d = self.decay(self.updates)
msd = de_parallel(model).state_dict() # model state_dict
for k, v in self.ema.state_dict().items():
if v.dtype.is_floating_point: # true for FP16 and FP32
v *= d
v += (1 - d) * msd[k].detach()
# assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype}, model {msd[k].dtype}'
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
"""Updates attributes and saves stripped model with optimizer removed."""
if self.enabled:
copy_attr(self.ema, model, include, exclude)
def strip_optimizer(f: Union[str, Path] = 'best.pt', s: str = '') -> None:
"""
Strip optimizer from 'f' to finalize training, optionally save as 's'.
Args:
f (str): file path to model to strip the optimizer from. Default is 'best.pt'.
s (str): file path to save the model with stripped optimizer to. If not provided, 'f' will be overwritten.
Returns:
None
Usage:
from pathlib import Path
from ultralytics.yolo.utils.torch_utils import strip_optimizer
for f in Path('/Users/glennjocher/Downloads/weights').rglob('*.pt'):
strip_optimizer(f)
"""
# Use dill (if exists) to serialize the lambda functions where pickle does not do this
try:
import dill as pickle
except ImportError:
import pickle
x = torch.load(f, map_location=torch.device('cpu'))
args = {**DEFAULT_CFG_DICT, **x['train_args']} if 'train_args' in x else None # combine args
if x.get('ema'):
x['model'] = x['ema'] # replace model with ema
for k in 'optimizer', 'best_fitness', 'ema', 'updates': # keys
x[k] = None
x['epoch'] = -1
x['model'].half() # to FP16
for p in x['model'].parameters():
p.requires_grad = False
x['train_args'] = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # strip non-default keys
# x['model'].args = x['train_args']
torch.save(x, s or f, pickle_module=pickle)
mb = os.path.getsize(s or f) / 1E6 # filesize
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
def profile(input, ops, n=10, device=None):
"""
YOLOv8 speed/memory/FLOPs profiler
Usage:
input = torch.randn(16, 3, 640, 640)
m1 = lambda x: x * torch.sigmoid(x)
m2 = nn.SiLU()
profile(input, [m1, m2], n=100) # profile over 100 iterations
"""
results = []
if not isinstance(device, torch.device):
device = select_device(device)
LOGGER.info(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
f"{'input':>24s}{'output':>24s}")
for x in input if isinstance(input, list) else [input]:
x = x.to(device)
x.requires_grad = True
for m in ops if isinstance(ops, list) else [ops]:
m = m.to(device) if hasattr(m, 'to') else m # device
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
try:
flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1E9 * 2 if thop else 0 # GFLOPs
except Exception:
flops = 0
try:
for _ in range(n):
t[0] = time_sync()
y = m(x)
t[1] = time_sync()
try:
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
t[2] = time_sync()
except Exception: # no backward method
# print(e) # for debug
t[2] = float('nan')
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
LOGGER.info(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
results.append([p, flops, mem, tf, tb, s_in, s_out])
except Exception as e:
LOGGER.info(e)
results.append(None)
torch.cuda.empty_cache()
return results
class EarlyStopping:
"""
Early stopping class that stops training when a specified number of epochs have passed without improvement.
"""
def __init__(self, patience=50):
"""
Initialize early stopping object
Args:
patience (int, optional): Number of epochs to wait after fitness stops improving before stopping.
"""
self.best_fitness = 0.0 # i.e. mAP
self.best_epoch = 0
self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
self.possible_stop = False # possible stop may occur next epoch
def __call__(self, epoch, fitness):
"""
Check whether to stop training
Args:
epoch (int): Current epoch of training
fitness (float): Fitness value of current epoch
Returns:
(bool): True if training should stop, False otherwise
"""
if fitness is None: # check if fitness=None (happens when val=False)
return False
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
self.best_epoch = epoch
self.best_fitness = fitness
delta = epoch - self.best_epoch # epochs without improvement
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
stop = delta >= self.patience # stop training if patience exceeded
if stop:
LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
f'i.e. `patience=300` or use `patience=0` to disable EarlyStopping.')
return stop

View File

@ -1,120 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.yolo.cfg import TASK2DATA, TASK2METRIC
from ultralytics.yolo.utils import DEFAULT_CFG_DICT, LOGGER, NUM_THREADS
def run_ray_tune(model,
space: dict = None,
grace_period: int = 10,
gpu_per_trial: int = None,
max_samples: int = 10,
**train_args):
"""
Runs hyperparameter tuning using Ray Tune.
Args:
model (YOLO): Model to run the tuner on.
space (dict, optional): The hyperparameter search space. Defaults to None.
grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10.
gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None.
max_samples (int, optional): The maximum number of trials to run. Defaults to 10.
train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}.
Returns:
(dict): A dictionary containing the results of the hyperparameter search.
Raises:
ModuleNotFoundError: If Ray Tune is not installed.
"""
if train_args is None:
train_args = {}
try:
from ray import tune
from ray.air import RunConfig
from ray.air.integrations.wandb import WandbLoggerCallback
from ray.tune.schedulers import ASHAScheduler
except ImportError:
raise ModuleNotFoundError("Tuning hyperparameters requires Ray Tune. Install with: pip install 'ray[tune]'")
try:
import wandb
assert hasattr(wandb, '__version__')
except (ImportError, AssertionError):
wandb = False
default_space = {
# 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
'lr0': tune.uniform(1e-5, 1e-1),
'lrf': tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
'momentum': tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1
'weight_decay': tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4
'warmup_epochs': tune.uniform(0.0, 5.0), # warmup epochs (fractions ok)
'warmup_momentum': tune.uniform(0.0, 0.95), # warmup initial momentum
'box': tune.uniform(0.02, 0.2), # box loss gain
'cls': tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels)
'hsv_h': tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction)
'hsv_s': tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction)
'hsv_v': tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction)
'degrees': tune.uniform(0.0, 45.0), # image rotation (+/- deg)
'translate': tune.uniform(0.0, 0.9), # image translation (+/- fraction)
'scale': tune.uniform(0.0, 0.9), # image scale (+/- gain)
'shear': tune.uniform(0.0, 10.0), # image shear (+/- deg)
'perspective': tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
'flipud': tune.uniform(0.0, 1.0), # image flip up-down (probability)
'fliplr': tune.uniform(0.0, 1.0), # image flip left-right (probability)
'mosaic': tune.uniform(0.0, 1.0), # image mixup (probability)
'mixup': tune.uniform(0.0, 1.0), # image mixup (probability)
'copy_paste': tune.uniform(0.0, 1.0)} # segment copy-paste (probability)
def _tune(config):
"""
Trains the YOLO model with the specified hyperparameters and additional arguments.
Args:
config (dict): A dictionary of hyperparameters to use for training.
Returns:
None.
"""
model._reset_callbacks()
config.update(train_args)
model.train(**config)
# Get search space
if not space:
space = default_space
LOGGER.warning('WARNING ⚠️ search space not provided, using default search space.')
# Get dataset
data = train_args.get('data', TASK2DATA[model.task])
space['data'] = data
if 'data' not in train_args:
LOGGER.warning(f'WARNING ⚠️ data not provided, using default "data={data}".')
# Define the trainable function with allocated resources
trainable_with_resources = tune.with_resources(_tune, {'cpu': NUM_THREADS, 'gpu': gpu_per_trial or 0})
# Define the ASHA scheduler for hyperparameter search
asha_scheduler = ASHAScheduler(time_attr='epoch',
metric=TASK2METRIC[model.task],
mode='max',
max_t=train_args.get('epochs') or DEFAULT_CFG_DICT['epochs'] or 100,
grace_period=grace_period,
reduction_factor=3)
# Define the callbacks for the hyperparameter search
tuner_callbacks = [WandbLoggerCallback(project='YOLOv8-tune')] if wandb else []
# Create the Ray Tune hyperparameter search tuner
tuner = tune.Tuner(trainable_with_resources,
param_space=space,
tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples),
run_config=RunConfig(callbacks=tuner_callbacks, storage_path='./runs/tune'))
# Run the hyperparameter search
tuner.fit()
# Return the results of the hyperparameter search
return tuner.get_results()

View File

@ -1,5 +1,10 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import importlib
import sys
from ultralytics.yolo.v8 import classify, detect, pose, segment
from ultralytics.utils import LOGGER
__all__ = 'classify', 'segment', 'detect', 'pose'
# Set modules in sys.modules under their old name
sys.modules['ultralytics.yolo.v8'] = importlib.import_module('ultralytics.models.yolo')
LOGGER.warning("WARNING ⚠️ 'ultralytics.yolo.v8' is deprecated since '8.0.136' and will be removed in '8.1.0'. "
"Please use 'ultralytics.models.yolo' instead.")

View File

@ -1,7 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.yolo.v8.classify.predict import ClassificationPredictor, predict
from ultralytics.yolo.v8.classify.train import ClassificationTrainer, train
from ultralytics.yolo.v8.classify.val import ClassificationValidator, val
__all__ = 'ClassificationPredictor', 'predict', 'ClassificationTrainer', 'train', 'ClassificationValidator', 'val'

View File

@ -1,51 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.yolo.engine.predictor import BasePredictor
from ultralytics.yolo.engine.results import Results
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT
class ClassificationPredictor(BasePredictor):
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
super().__init__(cfg, overrides, _callbacks)
self.args.task = 'classify'
def preprocess(self, img):
"""Converts input image to model-compatible data type."""
if not isinstance(img, torch.Tensor):
img = torch.stack([self.transforms(im) for im in img], dim=0)
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
def postprocess(self, preds, img, orig_imgs):
"""Postprocesses predictions to return Results objects."""
results = []
for i, pred in enumerate(preds):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
path = self.batch[0]
img_path = path[i] if isinstance(path, list) else path
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, probs=pred))
return results
def predict(cfg=DEFAULT_CFG, use_python=False):
"""Run YOLO model predictions on input images/videos."""
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18"
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \
else 'https://ultralytics.com/images/bus.jpg'
args = dict(model=model, source=source)
if use_python:
from ultralytics import YOLO
YOLO(model)(**args)
else:
predictor = ClassificationPredictor(overrides=args)
predictor.predict_cli()
if __name__ == '__main__':
predict()

View File

@ -1,161 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
import torchvision
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight
from ultralytics.yolo import v8
from ultralytics.yolo.data import ClassificationDataset, build_dataloader
from ultralytics.yolo.engine.trainer import BaseTrainer
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, colorstr
from ultralytics.yolo.utils.plotting import plot_images, plot_results
from ultralytics.yolo.utils.torch_utils import is_parallel, strip_optimizer, torch_distributed_zero_first
class ClassificationTrainer(BaseTrainer):
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initialize a ClassificationTrainer object with optional configuration overrides and callbacks."""
if overrides is None:
overrides = {}
overrides['task'] = 'classify'
if overrides.get('imgsz') is None:
overrides['imgsz'] = 224
super().__init__(cfg, overrides, _callbacks)
def set_model_attributes(self):
"""Set the YOLO model's class names from the loaded dataset."""
self.model.names = self.data['names']
def get_model(self, cfg=None, weights=None, verbose=True):
"""Returns a modified PyTorch model configured for training YOLO."""
model = ClassificationModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
for m in model.modules():
if not self.args.pretrained and hasattr(m, 'reset_parameters'):
m.reset_parameters()
if isinstance(m, torch.nn.Dropout) and self.args.dropout:
m.p = self.args.dropout # set dropout
for p in model.parameters():
p.requires_grad = True # for training
return model
def setup_model(self):
"""
load/create/download model for any task
"""
# Classification models require special handling
if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed
return
model = str(self.model)
# Load a YOLO model locally, from torchvision, or from Ultralytics assets
if model.endswith('.pt'):
self.model, _ = attempt_load_one_weight(model, device='cpu')
for p in self.model.parameters():
p.requires_grad = True # for training
elif model.endswith('.yaml'):
self.model = self.get_model(cfg=model)
elif model in torchvision.models.__dict__:
self.model = torchvision.models.__dict__[model](weights='IMAGENET1K_V1' if self.args.pretrained else None)
else:
FileNotFoundError(f'ERROR: model={model} not found locally or online. Please check model name.')
ClassificationModel.reshape_outputs(self.model, self.data['nc'])
return # dont return ckpt. Classification doesn't support resume
def build_dataset(self, img_path, mode='train', batch=None):
return ClassificationDataset(root=img_path, args=self.args, augment=mode == 'train')
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
"""Returns PyTorch DataLoader with transforms to preprocess images for inference."""
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
dataset = self.build_dataset(dataset_path, mode)
loader = build_dataloader(dataset, batch_size, self.args.workers, rank=rank)
# Attach inference transforms
if mode != 'train':
if is_parallel(self.model):
self.model.module.transforms = loader.dataset.torch_transforms
else:
self.model.transforms = loader.dataset.torch_transforms
return loader
def preprocess_batch(self, batch):
"""Preprocesses a batch of images and classes."""
batch['img'] = batch['img'].to(self.device)
batch['cls'] = batch['cls'].to(self.device)
return batch
def progress_string(self):
"""Returns a formatted string showing training progress."""
return ('\n' + '%11s' * (4 + len(self.loss_names))) % \
('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
def get_validator(self):
"""Returns an instance of ClassificationValidator for validation."""
self.loss_names = ['loss']
return v8.classify.ClassificationValidator(self.test_loader, self.save_dir)
def label_loss_items(self, loss_items=None, prefix='train'):
"""
Returns a loss dict with labelled training loss items tensor
"""
# Not needed for classification but necessary for segmentation & detection
keys = [f'{prefix}/{x}' for x in self.loss_names]
if loss_items is None:
return keys
loss_items = [round(float(loss_items), 5)]
return dict(zip(keys, loss_items))
def resume_training(self, ckpt):
"""Resumes training from a given checkpoint."""
pass
def plot_metrics(self):
"""Plots metrics from a CSV file."""
plot_results(file=self.csv, classify=True, on_plot=self.on_plot) # save results.png
def final_eval(self):
"""Evaluate trained model and save validation results."""
for f in self.last, self.best:
if f.exists():
strip_optimizer(f) # strip optimizers
# TODO: validate best.pt after training completes
# if f is self.best:
# LOGGER.info(f'\nValidating {f}...')
# self.validator.args.save_json = True
# self.metrics = self.validator(model=f)
# self.metrics.pop('fitness', None)
# self.run_callbacks('on_fit_epoch_end')
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
def plot_training_samples(self, batch, ni):
"""Plots training samples with their annotations."""
plot_images(images=batch['img'],
batch_idx=torch.arange(len(batch['img'])),
cls=batch['cls'].squeeze(-1),
fname=self.save_dir / f'train_batch{ni}.jpg',
on_plot=self.on_plot)
def train(cfg=DEFAULT_CFG, use_python=False):
"""Train the YOLO classification model."""
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18"
data = cfg.data or 'mnist160' # or yolo.ClassificationDataset("mnist")
device = cfg.device if cfg.device is not None else ''
args = dict(model=model, data=data, device=device)
if use_python:
from ultralytics import YOLO
YOLO(model).train(**args)
else:
trainer = ClassificationTrainer(overrides=args)
trainer.train()
if __name__ == '__main__':
train()

View File

@ -1,109 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.yolo.data import ClassificationDataset, build_dataloader
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER
from ultralytics.yolo.utils.metrics import ClassifyMetrics, ConfusionMatrix
from ultralytics.yolo.utils.plotting import plot_images
class ClassificationValidator(BaseValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initializes ClassificationValidator instance with args, dataloader, save_dir, and progress bar."""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.args.task = 'classify'
self.metrics = ClassifyMetrics()
def get_desc(self):
"""Returns a formatted string summarizing classification metrics."""
return ('%22s' + '%11s' * 2) % ('classes', 'top1_acc', 'top5_acc')
def init_metrics(self, model):
"""Initialize confusion matrix, class names, and top-1 and top-5 accuracy."""
self.names = model.names
self.nc = len(model.names)
self.confusion_matrix = ConfusionMatrix(nc=self.nc, task='classify')
self.pred = []
self.targets = []
def preprocess(self, batch):
"""Preprocesses input batch and returns it."""
batch['img'] = batch['img'].to(self.device, non_blocking=True)
batch['img'] = batch['img'].half() if self.args.half else batch['img'].float()
batch['cls'] = batch['cls'].to(self.device)
return batch
def update_metrics(self, preds, batch):
"""Updates running metrics with model predictions and batch targets."""
n5 = min(len(self.model.names), 5)
self.pred.append(preds.argsort(1, descending=True)[:, :n5])
self.targets.append(batch['cls'])
def finalize_metrics(self, *args, **kwargs):
"""Finalizes metrics of the model such as confusion_matrix and speed."""
self.confusion_matrix.process_cls_preds(self.pred, self.targets)
if self.args.plots:
for normalize in True, False:
self.confusion_matrix.plot(save_dir=self.save_dir,
names=self.names.values(),
normalize=normalize,
on_plot=self.on_plot)
self.metrics.speed = self.speed
self.metrics.confusion_matrix = self.confusion_matrix
def get_stats(self):
"""Returns a dictionary of metrics obtained by processing targets and predictions."""
self.metrics.process(self.targets, self.pred)
return self.metrics.results_dict
def build_dataset(self, img_path):
return ClassificationDataset(root=img_path, args=self.args, augment=False)
def get_dataloader(self, dataset_path, batch_size):
"""Builds and returns a data loader for classification tasks with given parameters."""
dataset = self.build_dataset(dataset_path)
return build_dataloader(dataset, batch_size, self.args.workers, rank=-1)
def print_results(self):
"""Prints evaluation metrics for YOLO object detection model."""
pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format
LOGGER.info(pf % ('all', self.metrics.top1, self.metrics.top5))
def plot_val_samples(self, batch, ni):
"""Plot validation image samples."""
plot_images(images=batch['img'],
batch_idx=torch.arange(len(batch['img'])),
cls=batch['cls'].squeeze(-1),
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
names=self.names,
on_plot=self.on_plot)
def plot_predictions(self, batch, preds, ni):
"""Plots predicted bounding boxes on input images and saves the result."""
plot_images(batch['img'],
batch_idx=torch.arange(len(batch['img'])),
cls=torch.argmax(preds, dim=1),
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
names=self.names,
on_plot=self.on_plot) # pred
def val(cfg=DEFAULT_CFG, use_python=False):
"""Validate YOLO model using custom data."""
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18"
data = cfg.data or 'mnist160'
args = dict(model=model, data=data)
if use_python:
from ultralytics import YOLO
YOLO(model).val(**args)
else:
validator = ClassificationValidator(args=args)
validator(model=args['model'])
if __name__ == '__main__':
val()

View File

@ -1,7 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from .predict import DetectionPredictor, predict
from .train import DetectionTrainer, train
from .val import DetectionValidator, val
__all__ = 'DetectionPredictor', 'predict', 'DetectionTrainer', 'train', 'DetectionValidator', 'val'

View File

@ -1,48 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.yolo.engine.predictor import BasePredictor
from ultralytics.yolo.engine.results import Results
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops
class DetectionPredictor(BasePredictor):
def postprocess(self, preds, img, orig_imgs):
"""Postprocesses predictions and returns a list of Results objects."""
preds = ops.non_max_suppression(preds,
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
classes=self.args.classes)
results = []
for i, pred in enumerate(preds):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
if not isinstance(orig_imgs, torch.Tensor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
path = self.batch[0]
img_path = path[i] if isinstance(path, list) else path
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
return results
def predict(cfg=DEFAULT_CFG, use_python=False):
"""Runs YOLO model inference on input image(s)."""
model = cfg.model or 'yolov8n.pt'
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \
else 'https://ultralytics.com/images/bus.jpg'
args = dict(model=model, source=source)
if use_python:
from ultralytics import YOLO
YOLO(model)(**args)
else:
predictor = DetectionPredictor(overrides=args)
predictor.predict_cli()
if __name__ == '__main__':
predict()

View File

@ -1,123 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from copy import copy
import numpy as np
from ultralytics.nn.tasks import DetectionModel
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_dataloader, build_yolo_dataset
from ultralytics.yolo.engine.trainer import BaseTrainer
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK
from ultralytics.yolo.utils.plotting import plot_images, plot_labels, plot_results
from ultralytics.yolo.utils.torch_utils import de_parallel, torch_distributed_zero_first
# BaseTrainer python usage
class DetectionTrainer(BaseTrainer):
def build_dataset(self, img_path, mode='train', batch=None):
"""
Build YOLO Dataset.
Args:
img_path (str): Path to the folder containing images.
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
"""
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == 'val', stride=gs)
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
"""Construct and return dataloader."""
assert mode in ['train', 'val']
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
dataset = self.build_dataset(dataset_path, mode, batch_size)
shuffle = mode == 'train'
if getattr(dataset, 'rect', False) and shuffle:
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
shuffle = False
workers = self.args.workers if mode == 'train' else self.args.workers * 2
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader
def preprocess_batch(self, batch):
"""Preprocesses a batch of images by scaling and converting to float."""
batch['img'] = batch['img'].to(self.device, non_blocking=True).float() / 255
return batch
def set_model_attributes(self):
"""nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)."""
# self.args.box *= 3 / nl # scale to layers
# self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
# self.args.cls *= (self.args.imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
self.model.nc = self.data['nc'] # attach number of classes to model
self.model.names = self.data['names'] # attach class names to model
self.model.args = self.args # attach hyperparameters to model
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
def get_model(self, cfg=None, weights=None, verbose=True):
"""Return a YOLO detection model."""
model = DetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
return model
def get_validator(self):
"""Returns a DetectionValidator for YOLO model validation."""
self.loss_names = 'box_loss', 'cls_loss', 'dfl_loss'
return v8.detect.DetectionValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
def label_loss_items(self, loss_items=None, prefix='train'):
"""
Returns a loss dict with labelled training loss items tensor
"""
# Not needed for classification but necessary for segmentation & detection
keys = [f'{prefix}/{x}' for x in self.loss_names]
if loss_items is not None:
loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats
return dict(zip(keys, loss_items))
else:
return keys
def progress_string(self):
"""Returns a formatted string of training progress with epoch, GPU memory, loss, instances and size."""
return ('\n' + '%11s' *
(4 + len(self.loss_names))) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
def plot_training_samples(self, batch, ni):
"""Plots training samples with their annotations."""
plot_images(images=batch['img'],
batch_idx=batch['batch_idx'],
cls=batch['cls'].squeeze(-1),
bboxes=batch['bboxes'],
paths=batch['im_file'],
fname=self.save_dir / f'train_batch{ni}.jpg',
on_plot=self.on_plot)
def plot_metrics(self):
"""Plots metrics from a CSV file."""
plot_results(file=self.csv, on_plot=self.on_plot) # save results.png
def plot_training_labels(self):
"""Create a labeled training plot of the YOLO model."""
boxes = np.concatenate([lb['bboxes'] for lb in self.train_loader.dataset.labels], 0)
cls = np.concatenate([lb['cls'] for lb in self.train_loader.dataset.labels], 0)
plot_labels(boxes, cls.squeeze(), names=self.data['names'], save_dir=self.save_dir, on_plot=self.on_plot)
def train(cfg=DEFAULT_CFG, use_python=False):
"""Train and optimize YOLO model given training data and device."""
model = cfg.model or 'yolov8n.pt'
data = cfg.data or 'coco128.yaml' # or yolo.ClassificationDataset("mnist")
device = cfg.device if cfg.device is not None else ''
args = dict(model=model, data=data, device=device)
if use_python:
from ultralytics import YOLO
YOLO(model).train(**args)
else:
trainer = DetectionTrainer(overrides=args)
trainer.train()
if __name__ == '__main__':
train()

View File

@ -1,276 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import os
from pathlib import Path
import numpy as np
import torch
from ultralytics.yolo.data import build_dataloader, build_yolo_dataset
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, ops
from ultralytics.yolo.utils.checks import check_requirements
from ultralytics.yolo.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
from ultralytics.yolo.utils.torch_utils import de_parallel
class DetectionValidator(BaseValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initialize detection model with necessary variables and settings."""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.args.task = 'detect'
self.is_coco = False
self.class_map = None
self.metrics = DetMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
self.iouv = torch.linspace(0.5, 0.95, 10) # iou vector for mAP@0.5:0.95
self.niou = self.iouv.numel()
def preprocess(self, batch):
"""Preprocesses batch of images for YOLO training."""
batch['img'] = batch['img'].to(self.device, non_blocking=True)
batch['img'] = (batch['img'].half() if self.args.half else batch['img'].float()) / 255
for k in ['batch_idx', 'cls', 'bboxes']:
batch[k] = batch[k].to(self.device)
nb = len(batch['img'])
self.lb = [torch.cat([batch['cls'], batch['bboxes']], dim=-1)[batch['batch_idx'] == i]
for i in range(nb)] if self.args.save_hybrid else [] # for autolabelling
return batch
def init_metrics(self, model):
"""Initialize evaluation metrics for YOLO."""
val = self.data.get(self.args.split, '') # validation path
self.is_coco = isinstance(val, str) and 'coco' in val and val.endswith(f'{os.sep}val2017.txt') # is COCO
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
self.args.save_json |= self.is_coco and not self.training # run on final val if training COCO
self.names = model.names
self.nc = len(model.names)
self.metrics.names = self.names
self.metrics.plot = self.args.plots
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
self.seen = 0
self.jdict = []
self.stats = []
def get_desc(self):
"""Return a formatted string summarizing class metrics of YOLO model."""
return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)')
def postprocess(self, preds):
"""Apply Non-maximum suppression to prediction outputs."""
return ops.non_max_suppression(preds,
self.args.conf,
self.args.iou,
labels=self.lb,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det)
def update_metrics(self, preds, batch):
"""Metrics."""
for si, pred in enumerate(preds):
idx = batch['batch_idx'] == si
cls = batch['cls'][idx]
bbox = batch['bboxes'][idx]
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
shape = batch['ori_shape'][si]
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
self.seen += 1
if npr == 0:
if nl:
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
if self.args.plots:
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
continue
# Predictions
if self.args.single_cls:
pred[:, 5] = 0
predn = pred.clone()
ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape,
ratio_pad=batch['ratio_pad'][si]) # native-space pred
# Evaluate
if nl:
height, width = batch['img'].shape[2:]
tbox = ops.xywh2xyxy(bbox) * torch.tensor(
(width, height, width, height), device=self.device) # target boxes
ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape,
ratio_pad=batch['ratio_pad'][si]) # native-space labels
labelsn = torch.cat((cls, tbox), 1) # native-space labels
correct_bboxes = self._process_batch(predn, labelsn)
# TODO: maybe remove these `self.` arguments as they already are member variable
if self.args.plots:
self.confusion_matrix.process_batch(predn, labelsn)
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
# Save
if self.args.save_json:
self.pred_to_json(predn, batch['im_file'][si])
if self.args.save_txt:
file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt'
self.save_one_txt(predn, self.args.save_conf, shape, file)
def finalize_metrics(self, *args, **kwargs):
"""Set final values for metrics speed and confusion matrix."""
self.metrics.speed = self.speed
self.metrics.confusion_matrix = self.confusion_matrix
def get_stats(self):
"""Returns metrics statistics and results dictionary."""
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
if len(stats) and stats[0].any():
self.metrics.process(*stats)
self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc) # number of targets per class
return self.metrics.results_dict
def print_results(self):
"""Prints training/validation set metrics per class."""
pf = '%22s' + '%11i' * 2 + '%11.3g' * len(self.metrics.keys) # print format
LOGGER.info(pf % ('all', self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
if self.nt_per_class.sum() == 0:
LOGGER.warning(
f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels')
# Print results per class
if self.args.verbose and not self.training and self.nc > 1 and len(self.stats):
for i, c in enumerate(self.metrics.ap_class_index):
LOGGER.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))
if self.args.plots:
for normalize in True, False:
self.confusion_matrix.plot(save_dir=self.save_dir,
names=self.names.values(),
normalize=normalize,
on_plot=self.on_plot)
def _process_batch(self, detections, labels):
"""
Return correct prediction matrix
Arguments:
detections (array[N, 6]), x1, y1, x2, y2, conf, class
labels (array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (array[N, 10]), for 10 IoU levels
"""
iou = box_iou(labels[:, 1:], detections[:, :4])
correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool)
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(self.iouv)):
x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
def build_dataset(self, img_path, mode='val', batch=None):
"""Build YOLO Dataset
Args:
img_path (str): Path to the folder containing images.
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
"""
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=gs)
def get_dataloader(self, dataset_path, batch_size):
"""Construct and return dataloader."""
dataset = self.build_dataset(dataset_path, batch=batch_size, mode='val')
return build_dataloader(dataset, batch_size, self.args.workers, shuffle=False, rank=-1) # return dataloader
def plot_val_samples(self, batch, ni):
"""Plot validation image samples."""
plot_images(batch['img'],
batch['batch_idx'],
batch['cls'].squeeze(-1),
batch['bboxes'],
paths=batch['im_file'],
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
names=self.names,
on_plot=self.on_plot)
def plot_predictions(self, batch, preds, ni):
"""Plots predicted bounding boxes on input images and saves the result."""
plot_images(batch['img'],
*output_to_target(preds, max_det=self.args.max_det),
paths=batch['im_file'],
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
names=self.names,
on_plot=self.on_plot) # pred
def save_one_txt(self, predn, save_conf, shape, file):
"""Save YOLO detections to a txt file in normalized coordinates in a specific format."""
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(file, 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
def pred_to_json(self, predn, filename):
"""Serialize YOLO predictions to COCO json format."""
stem = Path(filename).stem
image_id = int(stem) if stem.isnumeric() else stem
box = ops.xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(predn.tolist(), box.tolist()):
self.jdict.append({
'image_id': image_id,
'category_id': self.class_map[int(p[5])],
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
def eval_json(self, stats):
"""Evaluates YOLO output in JSON format and returns performance statistics."""
if self.args.save_json and self.is_coco and len(self.jdict):
anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations
pred_json = self.save_dir / 'predictions.json' # predictions
LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
check_requirements('pycocotools>=2.0.6')
from pycocotools.coco import COCO # noqa
from pycocotools.cocoeval import COCOeval # noqa
for x in anno_json, pred_json:
assert x.is_file(), f'{x} file not found'
anno = COCO(str(anno_json)) # init annotations api
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
eval = COCOeval(anno, pred, 'bbox')
if self.is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval
eval.evaluate()
eval.accumulate()
eval.summarize()
stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = eval.stats[:2] # update mAP50-95 and mAP50
except Exception as e:
LOGGER.warning(f'pycocotools unable to run: {e}')
return stats
def val(cfg=DEFAULT_CFG, use_python=False):
"""Validate trained YOLO model on validation dataset."""
model = cfg.model or 'yolov8n.pt'
data = cfg.data or 'coco128.yaml'
args = dict(model=model, data=data)
if use_python:
from ultralytics import YOLO
YOLO(model).val(**args)
else:
validator = DetectionValidator(args=args)
validator(model=args['model'])
if __name__ == '__main__':
val()

View File

@ -1,7 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from .predict import PosePredictor, predict
from .train import PoseTrainer, train
from .val import PoseValidator, val
__all__ = 'PoseTrainer', 'train', 'PoseValidator', 'val', 'PosePredictor', 'predict'

View File

@ -1,58 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.yolo.engine.results import Results
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops
from ultralytics.yolo.v8.detect.predict import DetectionPredictor
class PosePredictor(DetectionPredictor):
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
super().__init__(cfg, overrides, _callbacks)
self.args.task = 'pose'
def postprocess(self, preds, img, orig_imgs):
"""Return detection results for a given input image or list of images."""
preds = ops.non_max_suppression(preds,
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
classes=self.args.classes,
nc=len(self.model.names))
results = []
for i, pred in enumerate(preds):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
shape = orig_img.shape
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, shape)
path = self.batch[0]
img_path = path[i] if isinstance(path, list) else path
results.append(
Results(orig_img=orig_img,
path=img_path,
names=self.model.names,
boxes=pred[:, :6],
keypoints=pred_kpts))
return results
def predict(cfg=DEFAULT_CFG, use_python=False):
"""Runs YOLO to predict objects in an image or video."""
model = cfg.model or 'yolov8n-pose.pt'
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \
else 'https://ultralytics.com/images/bus.jpg'
args = dict(model=model, source=source)
if use_python:
from ultralytics import YOLO
YOLO(model)(**args)
else:
predictor = PosePredictor(overrides=args)
predictor.predict_cli()
if __name__ == '__main__':
predict()

View File

@ -1,77 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from copy import copy
from ultralytics.nn.tasks import PoseModel
from ultralytics.yolo import v8
from ultralytics.yolo.utils import DEFAULT_CFG
from ultralytics.yolo.utils.plotting import plot_images, plot_results
# BaseTrainer python usage
class PoseTrainer(v8.detect.DetectionTrainer):
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initialize a PoseTrainer object with specified configurations and overrides."""
if overrides is None:
overrides = {}
overrides['task'] = 'pose'
super().__init__(cfg, overrides, _callbacks)
def get_model(self, cfg=None, weights=None, verbose=True):
"""Get pose estimation model with specified configuration and weights."""
model = PoseModel(cfg, ch=3, nc=self.data['nc'], data_kpt_shape=self.data['kpt_shape'], verbose=verbose)
if weights:
model.load(weights)
return model
def set_model_attributes(self):
"""Sets keypoints shape attribute of PoseModel."""
super().set_model_attributes()
self.model.kpt_shape = self.data['kpt_shape']
def get_validator(self):
"""Returns an instance of the PoseValidator class for validation."""
self.loss_names = 'box_loss', 'pose_loss', 'kobj_loss', 'cls_loss', 'dfl_loss'
return v8.pose.PoseValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
def plot_training_samples(self, batch, ni):
"""Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints."""
images = batch['img']
kpts = batch['keypoints']
cls = batch['cls'].squeeze(-1)
bboxes = batch['bboxes']
paths = batch['im_file']
batch_idx = batch['batch_idx']
plot_images(images,
batch_idx,
cls,
bboxes,
kpts=kpts,
paths=paths,
fname=self.save_dir / f'train_batch{ni}.jpg',
on_plot=self.on_plot)
def plot_metrics(self):
"""Plots training/val metrics."""
plot_results(file=self.csv, pose=True, on_plot=self.on_plot) # save results.png
def train(cfg=DEFAULT_CFG, use_python=False):
"""Train the YOLO model on the given data and device."""
model = cfg.model or 'yolov8n-pose.yaml'
data = cfg.data or 'coco8-pose.yaml'
device = cfg.device if cfg.device is not None else ''
args = dict(model=model, data=data, device=device)
if use_python:
from ultralytics import YOLO
YOLO(model).train(**args)
else:
trainer = PoseTrainer(overrides=args)
trainer.train()
if __name__ == '__main__':
train()

View File

@ -1,224 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from pathlib import Path
import numpy as np
import torch
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, ops
from ultralytics.yolo.utils.checks import check_requirements
from ultralytics.yolo.utils.metrics import OKS_SIGMA, PoseMetrics, box_iou, kpt_iou
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
from ultralytics.yolo.v8.detect import DetectionValidator
class PoseValidator(DetectionValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initialize a 'PoseValidator' object with custom parameters and assigned attributes."""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.args.task = 'pose'
self.metrics = PoseMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
def preprocess(self, batch):
"""Preprocesses the batch by converting the 'keypoints' data into a float and moving it to the device."""
batch = super().preprocess(batch)
batch['keypoints'] = batch['keypoints'].to(self.device).float()
return batch
def get_desc(self):
"""Returns description of evaluation metrics in string format."""
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Pose(P',
'R', 'mAP50', 'mAP50-95)')
def postprocess(self, preds):
"""Apply non-maximum suppression and return detections with high confidence scores."""
return ops.non_max_suppression(preds,
self.args.conf,
self.args.iou,
labels=self.lb,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det,
nc=self.nc)
def init_metrics(self, model):
"""Initiate pose estimation metrics for YOLO model."""
super().init_metrics(model)
self.kpt_shape = self.data['kpt_shape']
is_pose = self.kpt_shape == [17, 3]
nkpt = self.kpt_shape[0]
self.sigma = OKS_SIGMA if is_pose else np.ones(nkpt) / nkpt
def update_metrics(self, preds, batch):
"""Metrics."""
for si, pred in enumerate(preds):
idx = batch['batch_idx'] == si
cls = batch['cls'][idx]
bbox = batch['bboxes'][idx]
kpts = batch['keypoints'][idx]
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
nk = kpts.shape[1] # number of keypoints
shape = batch['ori_shape'][si]
correct_kpts = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
self.seen += 1
if npr == 0:
if nl:
self.stats.append((correct_bboxes, correct_kpts, *torch.zeros(
(2, 0), device=self.device), cls.squeeze(-1)))
if self.args.plots:
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
continue
# Predictions
if self.args.single_cls:
pred[:, 5] = 0
predn = pred.clone()
ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape,
ratio_pad=batch['ratio_pad'][si]) # native-space pred
pred_kpts = predn[:, 6:].view(npr, nk, -1)
ops.scale_coords(batch['img'][si].shape[1:], pred_kpts, shape, ratio_pad=batch['ratio_pad'][si])
# Evaluate
if nl:
height, width = batch['img'].shape[2:]
tbox = ops.xywh2xyxy(bbox) * torch.tensor(
(width, height, width, height), device=self.device) # target boxes
ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape,
ratio_pad=batch['ratio_pad'][si]) # native-space labels
tkpts = kpts.clone()
tkpts[..., 0] *= width
tkpts[..., 1] *= height
tkpts = ops.scale_coords(batch['img'][si].shape[1:], tkpts, shape, ratio_pad=batch['ratio_pad'][si])
labelsn = torch.cat((cls, tbox), 1) # native-space labels
correct_bboxes = self._process_batch(predn[:, :6], labelsn)
correct_kpts = self._process_batch(predn[:, :6], labelsn, pred_kpts, tkpts)
if self.args.plots:
self.confusion_matrix.process_batch(predn, labelsn)
# Append correct_masks, correct_boxes, pconf, pcls, tcls
self.stats.append((correct_bboxes, correct_kpts, pred[:, 4], pred[:, 5], cls.squeeze(-1)))
# Save
if self.args.save_json:
self.pred_to_json(predn, batch['im_file'][si])
# if self.args.save_txt:
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
def _process_batch(self, detections, labels, pred_kpts=None, gt_kpts=None):
"""
Return correct prediction matrix
Arguments:
detections (array[N, 6]), x1, y1, x2, y2, conf, class
labels (array[M, 5]), class, x1, y1, x2, y2
pred_kpts (array[N, 51]), 51 = 17 * 3
gt_kpts (array[N, 51])
Returns:
correct (array[N, 10]), for 10 IoU levels
"""
if pred_kpts is not None and gt_kpts is not None:
# `0.53` is from https://github.com/jin-s13/xtcocoapi/blob/master/xtcocotools/cocoeval.py#L384
area = ops.xyxy2xywh(labels[:, 1:])[:, 2:].prod(1) * 0.53
iou = kpt_iou(gt_kpts, pred_kpts, sigma=self.sigma, area=area)
else: # boxes
iou = box_iou(labels[:, 1:], detections[:, :4])
correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool)
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(self.iouv)):
x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
def plot_val_samples(self, batch, ni):
"""Plots and saves validation set samples with predicted bounding boxes and keypoints."""
plot_images(batch['img'],
batch['batch_idx'],
batch['cls'].squeeze(-1),
batch['bboxes'],
kpts=batch['keypoints'],
paths=batch['im_file'],
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
names=self.names,
on_plot=self.on_plot)
def plot_predictions(self, batch, preds, ni):
"""Plots predictions for YOLO model."""
pred_kpts = torch.cat([p[:, 6:].view(-1, *self.kpt_shape) for p in preds], 0)
plot_images(batch['img'],
*output_to_target(preds, max_det=self.args.max_det),
kpts=pred_kpts,
paths=batch['im_file'],
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
names=self.names,
on_plot=self.on_plot) # pred
def pred_to_json(self, predn, filename):
"""Converts YOLO predictions to COCO JSON format."""
stem = Path(filename).stem
image_id = int(stem) if stem.isnumeric() else stem
box = ops.xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(predn.tolist(), box.tolist()):
self.jdict.append({
'image_id': image_id,
'category_id': self.class_map[int(p[5])],
'bbox': [round(x, 3) for x in b],
'keypoints': p[6:],
'score': round(p[4], 5)})
def eval_json(self, stats):
"""Evaluates object detection model using COCO JSON format."""
if self.args.save_json and self.is_coco and len(self.jdict):
anno_json = self.data['path'] / 'annotations/person_keypoints_val2017.json' # annotations
pred_json = self.save_dir / 'predictions.json' # predictions
LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
check_requirements('pycocotools>=2.0.6')
from pycocotools.coco import COCO # noqa
from pycocotools.cocoeval import COCOeval # noqa
for x in anno_json, pred_json:
assert x.is_file(), f'{x} file not found'
anno = COCO(str(anno_json)) # init annotations api
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'keypoints')]):
if self.is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval
eval.evaluate()
eval.accumulate()
eval.summarize()
idx = i * 4 + 2
stats[self.metrics.keys[idx + 1]], stats[
self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50
except Exception as e:
LOGGER.warning(f'pycocotools unable to run: {e}')
return stats
def val(cfg=DEFAULT_CFG, use_python=False):
"""Performs validation on YOLO model using given data."""
model = cfg.model or 'yolov8n-pose.pt'
data = cfg.data or 'coco8-pose.yaml'
args = dict(model=model, data=data)
if use_python:
from ultralytics import YOLO
YOLO(model).val(**args)
else:
validator = PoseValidator(args=args)
validator(model=args['model'])
if __name__ == '__main__':
val()

View File

@ -1,7 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from .predict import SegmentationPredictor, predict
from .train import SegmentationTrainer, train
from .val import SegmentationValidator, val
__all__ = 'SegmentationPredictor', 'predict', 'SegmentationTrainer', 'train', 'SegmentationValidator', 'val'

View File

@ -1,63 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.yolo.engine.results import Results
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops
from ultralytics.yolo.v8.detect.predict import DetectionPredictor
class SegmentationPredictor(DetectionPredictor):
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
super().__init__(cfg, overrides, _callbacks)
self.args.task = 'segment'
def postprocess(self, preds, img, orig_imgs):
"""TODO: filter by classes."""
p = ops.non_max_suppression(preds[0],
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
nc=len(self.model.names),
classes=self.args.classes)
results = []
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
for i, pred in enumerate(p):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
path = self.batch[0]
img_path = path[i] if isinstance(path, list) else path
if not len(pred): # save empty boxes
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6]))
continue
if self.args.retina_masks:
if not isinstance(orig_imgs, torch.Tensor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
else:
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
if not isinstance(orig_imgs, torch.Tensor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
results.append(
Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
return results
def predict(cfg=DEFAULT_CFG, use_python=False):
"""Runs YOLO object detection on an image or video source."""
model = cfg.model or 'yolov8n-seg.pt'
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \
else 'https://ultralytics.com/images/bus.jpg'
args = dict(model=model, source=source)
if use_python:
from ultralytics import YOLO
YOLO(model)(**args)
else:
predictor = SegmentationPredictor(overrides=args)
predictor.predict_cli()
if __name__ == '__main__':
predict()

View File

@ -1,65 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from copy import copy
from ultralytics.nn.tasks import SegmentationModel
from ultralytics.yolo import v8
from ultralytics.yolo.utils import DEFAULT_CFG, RANK
from ultralytics.yolo.utils.plotting import plot_images, plot_results
# BaseTrainer python usage
class SegmentationTrainer(v8.detect.DetectionTrainer):
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initialize a SegmentationTrainer object with given arguments."""
if overrides is None:
overrides = {}
overrides['task'] = 'segment'
super().__init__(cfg, overrides, _callbacks)
def get_model(self, cfg=None, weights=None, verbose=True):
"""Return SegmentationModel initialized with specified config and weights."""
model = SegmentationModel(cfg, ch=3, nc=self.data['nc'], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
return model
def get_validator(self):
"""Return an instance of SegmentationValidator for validation of YOLO model."""
self.loss_names = 'box_loss', 'seg_loss', 'cls_loss', 'dfl_loss'
return v8.segment.SegmentationValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
def plot_training_samples(self, batch, ni):
"""Creates a plot of training sample images with labels and box coordinates."""
plot_images(batch['img'],
batch['batch_idx'],
batch['cls'].squeeze(-1),
batch['bboxes'],
batch['masks'],
paths=batch['im_file'],
fname=self.save_dir / f'train_batch{ni}.jpg',
on_plot=self.on_plot)
def plot_metrics(self):
"""Plots training/val metrics."""
plot_results(file=self.csv, segment=True, on_plot=self.on_plot) # save results.png
def train(cfg=DEFAULT_CFG, use_python=False):
"""Train a YOLO segmentation model based on passed arguments."""
model = cfg.model or 'yolov8n-seg.pt'
data = cfg.data or 'coco128-seg.yaml' # or yolo.ClassificationDataset("mnist")
device = cfg.device if cfg.device is not None else ''
args = dict(model=model, data=data, device=device)
if use_python:
from ultralytics import YOLO
YOLO(model).train(**args)
else:
trainer = SegmentationTrainer(overrides=args)
trainer.train()
if __name__ == '__main__':
train()

View File

@ -1,262 +0,0 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from multiprocessing.pool import ThreadPool
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, NUM_THREADS, ops
from ultralytics.yolo.utils.checks import check_requirements
from ultralytics.yolo.utils.metrics import SegmentMetrics, box_iou, mask_iou
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
from ultralytics.yolo.v8.detect import DetectionValidator
class SegmentationValidator(DetectionValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics."""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.args.task = 'segment'
self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
def preprocess(self, batch):
"""Preprocesses batch by converting masks to float and sending to device."""
batch = super().preprocess(batch)
batch['masks'] = batch['masks'].to(self.device).float()
return batch
def init_metrics(self, model):
"""Initialize metrics and select mask processing function based on save_json flag."""
super().init_metrics(model)
self.plot_masks = []
if self.args.save_json:
check_requirements('pycocotools>=2.0.6')
self.process = ops.process_mask_upsample # more accurate
else:
self.process = ops.process_mask # faster
def get_desc(self):
"""Return a formatted description of evaluation metrics."""
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P',
'R', 'mAP50', 'mAP50-95)')
def postprocess(self, preds):
"""Postprocesses YOLO predictions and returns output detections with proto."""
p = ops.non_max_suppression(preds[0],
self.args.conf,
self.args.iou,
labels=self.lb,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det,
nc=self.nc)
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
return p, proto
def update_metrics(self, preds, batch):
"""Metrics."""
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
idx = batch['batch_idx'] == si
cls = batch['cls'][idx]
bbox = batch['bboxes'][idx]
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
shape = batch['ori_shape'][si]
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
self.seen += 1
if npr == 0:
if nl:
self.stats.append((correct_bboxes, correct_masks, *torch.zeros(
(2, 0), device=self.device), cls.squeeze(-1)))
if self.args.plots:
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
continue
# Masks
midx = [si] if self.args.overlap_mask else idx
gt_masks = batch['masks'][midx]
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch['img'][si].shape[1:])
# Predictions
if self.args.single_cls:
pred[:, 5] = 0
predn = pred.clone()
ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape,
ratio_pad=batch['ratio_pad'][si]) # native-space pred
# Evaluate
if nl:
height, width = batch['img'].shape[2:]
tbox = ops.xywh2xyxy(bbox) * torch.tensor(
(width, height, width, height), device=self.device) # target boxes
ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape,
ratio_pad=batch['ratio_pad'][si]) # native-space labels
labelsn = torch.cat((cls, tbox), 1) # native-space labels
correct_bboxes = self._process_batch(predn, labelsn)
# TODO: maybe remove these `self.` arguments as they already are member variable
correct_masks = self._process_batch(predn,
labelsn,
pred_masks,
gt_masks,
overlap=self.args.overlap_mask,
masks=True)
if self.args.plots:
self.confusion_matrix.process_batch(predn, labelsn)
# Append correct_masks, correct_boxes, pconf, pcls, tcls
self.stats.append((correct_bboxes, correct_masks, pred[:, 4], pred[:, 5], cls.squeeze(-1)))
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
if self.args.plots and self.batch_i < 3:
self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot
# Save
if self.args.save_json:
pred_masks = ops.scale_image(pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(),
shape,
ratio_pad=batch['ratio_pad'][si])
self.pred_to_json(predn, batch['im_file'][si], pred_masks)
# if self.args.save_txt:
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
def finalize_metrics(self, *args, **kwargs):
"""Sets speed and confusion matrix for evaluation metrics."""
self.metrics.speed = self.speed
self.metrics.confusion_matrix = self.confusion_matrix
def _process_batch(self, detections, labels, pred_masks=None, gt_masks=None, overlap=False, masks=False):
"""
Return correct prediction matrix
Arguments:
detections (array[N, 6]), x1, y1, x2, y2, conf, class
labels (array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (array[N, 10]), for 10 IoU levels
"""
if masks:
if overlap:
nl = len(labels)
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
if gt_masks.shape[1:] != pred_masks.shape[1:]:
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0]
gt_masks = gt_masks.gt_(0.5)
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
else: # boxes
iou = box_iou(labels[:, 1:], detections[:, :4])
correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool)
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(self.iouv)):
x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
def plot_val_samples(self, batch, ni):
"""Plots validation samples with bounding box labels."""
plot_images(batch['img'],
batch['batch_idx'],
batch['cls'].squeeze(-1),
batch['bboxes'],
batch['masks'],
paths=batch['im_file'],
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
names=self.names,
on_plot=self.on_plot)
def plot_predictions(self, batch, preds, ni):
"""Plots batch predictions with masks and bounding boxes."""
plot_images(
batch['img'],
*output_to_target(preds[0], max_det=15), # not set to self.args.max_det due to slow plotting speed
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks,
paths=batch['im_file'],
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
names=self.names,
on_plot=self.on_plot) # pred
self.plot_masks.clear()
def pred_to_json(self, predn, filename, pred_masks):
"""Save one JSON result."""
# Example result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
from pycocotools.mask import encode # noqa
def single_encode(x):
"""Encode predicted masks as RLE and append results to jdict."""
rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0]
rle['counts'] = rle['counts'].decode('utf-8')
return rle
stem = Path(filename).stem
image_id = int(stem) if stem.isnumeric() else stem
box = ops.xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
pred_masks = np.transpose(pred_masks, (2, 0, 1))
with ThreadPool(NUM_THREADS) as pool:
rles = pool.map(single_encode, pred_masks)
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
self.jdict.append({
'image_id': image_id,
'category_id': self.class_map[int(p[5])],
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5),
'segmentation': rles[i]})
def eval_json(self, stats):
"""Return COCO-style object detection evaluation metrics."""
if self.args.save_json and self.is_coco and len(self.jdict):
anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations
pred_json = self.save_dir / 'predictions.json' # predictions
LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
check_requirements('pycocotools>=2.0.6')
from pycocotools.coco import COCO # noqa
from pycocotools.cocoeval import COCOeval # noqa
for x in anno_json, pred_json:
assert x.is_file(), f'{x} file not found'
anno = COCO(str(anno_json)) # init annotations api
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm')]):
if self.is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval
eval.evaluate()
eval.accumulate()
eval.summarize()
idx = i * 4 + 2
stats[self.metrics.keys[idx + 1]], stats[
self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50
except Exception as e:
LOGGER.warning(f'pycocotools unable to run: {e}')
return stats
def val(cfg=DEFAULT_CFG, use_python=False):
"""Validate trained YOLO model on validation data."""
model = cfg.model or 'yolov8n-seg.pt'
data = cfg.data or 'coco128-seg.yaml'
args = dict(model=model, data=data)
if use_python:
from ultralytics import YOLO
YOLO(model).val(**args)
else:
validator = SegmentationValidator(args=args)
validator(model=args['model'])
if __name__ == '__main__':
val()