ultralytics 8.0.136
refactor and simplify package (#3748)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
@ -1,8 +1,3 @@
|
||||
---
|
||||
description: Ensure class names match filenames for easy imports. Use AutoBackend to automatically rename and refactor model files.
|
||||
keywords: AutoBackend, ultralytics, nn, autobackend, check class names, neural network
|
||||
---
|
||||
|
||||
## AutoBackend
|
||||
---
|
||||
### ::: ultralytics.nn.autobackend.AutoBackend
|
||||
|
@ -1,8 +1,3 @@
|
||||
---
|
||||
description: Explore ultralytics.nn.modules.block to build powerful YOLO object detection models. Master DFL, HGStem, SPP, CSP components and more.
|
||||
keywords: Ultralytics, NN Modules, Blocks, DFL, HGStem, SPP, C1, C2f, C3x, C3TR, GhostBottleneck, BottleneckCSP, Computer Vision
|
||||
---
|
||||
|
||||
## DFL
|
||||
---
|
||||
### ::: ultralytics.nn.modules.block.DFL
|
||||
|
@ -1,8 +1,3 @@
|
||||
---
|
||||
description: Explore convolutional neural network modules & techniques such as LightConv, DWConv, ConvTranspose, GhostConv, CBAM & autopad with Ultralytics Docs.
|
||||
keywords: Ultralytics, Convolutional Neural Network, Conv2, DWConv, ConvTranspose, GhostConv, ChannelAttention, CBAM, autopad
|
||||
---
|
||||
|
||||
## Conv
|
||||
---
|
||||
### ::: ultralytics.nn.modules.conv.Conv
|
||||
|
@ -1,8 +1,3 @@
|
||||
---
|
||||
description: 'Learn about Ultralytics YOLO modules: Segment, Classify, and RTDETRDecoder. Optimize object detection and classification in your project.'
|
||||
keywords: Ultralytics, YOLO, object detection, pose estimation, RTDETRDecoder, modules, classes, documentation
|
||||
---
|
||||
|
||||
## Detect
|
||||
---
|
||||
### ::: ultralytics.nn.modules.head.Detect
|
||||
|
@ -1,8 +1,3 @@
|
||||
---
|
||||
description: Explore the Ultralytics nn modules pages on Transformer and MLP blocks, LayerNorm2d, and Deformable Transformer Decoder Layer.
|
||||
keywords: Ultralytics, NN Modules, TransformerEncoderLayer, TransformerLayer, MLPBlock, LayerNorm2d, DeformableTransformerDecoderLayer, examples, code snippets, tutorials
|
||||
---
|
||||
|
||||
## TransformerEncoderLayer
|
||||
---
|
||||
### ::: ultralytics.nn.modules.transformer.TransformerEncoderLayer
|
||||
|
@ -1,8 +1,3 @@
|
||||
---
|
||||
description: 'Learn about Ultralytics NN modules: get_clones, linear_init_, and multi_scale_deformable_attn_pytorch. Code examples and usage tips.'
|
||||
keywords: Ultralytics, NN Utils, Docs, PyTorch, bias initialization, linear initialization, multi-scale deformable attention
|
||||
---
|
||||
|
||||
## _get_clones
|
||||
---
|
||||
### ::: ultralytics.nn.modules.utils._get_clones
|
||||
|
@ -1,8 +1,3 @@
|
||||
---
|
||||
description: Learn how to work with Ultralytics YOLO Detection, Segmentation & Classification Models, load weights and parse models in PyTorch.
|
||||
keywords: neural network, deep learning, computer vision, object detection, image segmentation, image classification, model ensemble, PyTorch
|
||||
---
|
||||
|
||||
## BaseModel
|
||||
---
|
||||
### ::: ultralytics.nn.tasks.BaseModel
|
||||
@ -38,6 +33,11 @@ keywords: neural network, deep learning, computer vision, object detection, imag
|
||||
### ::: ultralytics.nn.tasks.Ensemble
|
||||
<br><br>
|
||||
|
||||
## temporary_modules
|
||||
---
|
||||
### ::: ultralytics.nn.tasks.temporary_modules
|
||||
<br><br>
|
||||
|
||||
## torch_safe_load
|
||||
---
|
||||
### ::: ultralytics.nn.tasks.torch_safe_load
|
||||
|
Reference in New Issue
Block a user