Add DVC experiments logger with DVCLive (#2792)

single_channel
Ivan Shcheklein 1 year ago committed by GitHub
parent 2b26572e42
commit 6057b267af
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -14,6 +14,7 @@ tqdm>=4.64.0
# Logging -------------------------------------
# tensorboard>=2.13.0
# dvclive>=2.11.0
# clearml
# comet

@ -198,6 +198,7 @@ def add_integration_callbacks(instance):
"""
from .clearml import callbacks as clearml_cb
from .comet import callbacks as comet_cb
from .dvc import callbacks as dvc_cb
from .hub import callbacks as hub_cb
from .mlflow import callbacks as mlflow_cb
from .neptune import callbacks as neptune_cb
@ -205,7 +206,7 @@ def add_integration_callbacks(instance):
from .tensorboard import callbacks as tensorboard_cb
from .wb import callbacks as wb_cb
for x in clearml_cb, comet_cb, hub_cb, mlflow_cb, neptune_cb, tune_cb, tensorboard_cb, wb_cb:
for x in clearml_cb, comet_cb, hub_cb, mlflow_cb, neptune_cb, tune_cb, tensorboard_cb, wb_cb, dvc_cb:
for k, v in x.items():
if v not in instance.callbacks[k]: # prevent duplicate callbacks addition
instance.callbacks[k].append(v) # callback[name].append(func)

@ -0,0 +1,135 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import os
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
try:
from importlib.metadata import version
import dvclive
assert not TESTS_RUNNING # do not log pytest
assert version('dvclive')
except (ImportError, AssertionError):
dvclive = None
# DVCLive logger instance
live = None
_processed_plots = {}
# `on_fit_epoch_end` is called on final validation (probably need to be fixed)
# for now this is the way we distinguish final evaluation of the best model vs
# last epoch validation
_training_epoch = False
def _logger_disabled():
return os.getenv('ULTRALYTICS_DVC_DISABLED', 'false').lower() == 'true'
def _log_images(image_path, prefix=''):
if live:
live.log_image(os.path.join(prefix, image_path.name), image_path)
def _log_plots(plots, prefix=''):
for name, params in plots.items():
timestamp = params['timestamp']
if _processed_plots.get(name, None) != timestamp:
_log_images(name, prefix)
_processed_plots[name] = timestamp
def _log_confusion_matrix(validator):
targets = []
preds = []
matrix = validator.confusion_matrix.matrix
names = list(validator.names.values())
if validator.confusion_matrix.task == 'detect':
names += ['background']
for ti, pred in enumerate(matrix.T.astype(int)):
for pi, num in enumerate(pred):
targets.extend([names[ti]] * num)
preds.extend([names[pi]] * num)
live.log_sklearn_plot('confusion_matrix', targets, preds, name='cf.json', normalized=True)
def on_pretrain_routine_start(trainer):
try:
global live
if not _logger_disabled():
live = dvclive.Live(save_dvc_exp=True)
LOGGER.info(
'DVCLive is detected and auto logging is enabled (can be disabled with `ULTRALYTICS_DVC_DISABLED=true`).'
)
else:
LOGGER.debug('DVCLive is detected and auto logging is disabled via `ULTRALYTICS_DVC_DISABLED`.')
live = None
except Exception as e:
LOGGER.warning(f'WARNING ⚠️ DVCLive installed but not initialized correctly, not logging this run. {e}')
def on_pretrain_routine_end(trainer):
_log_plots(trainer.plots, 'train')
def on_train_start(trainer):
if live:
live.log_params(trainer.args)
def on_train_epoch_start(trainer):
global _training_epoch
_training_epoch = True
def on_fit_epoch_end(trainer):
global _training_epoch
if live and _training_epoch:
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr}
for metric, value in all_metrics.items():
live.log_metric(metric, value)
if trainer.epoch == 0:
model_info = {
'model/parameters': get_num_params(trainer.model),
'model/GFLOPs': round(get_flops(trainer.model), 3),
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
for metric, value in model_info.items():
live.log_metric(metric, value, plot=False)
_log_plots(trainer.plots, 'train')
_log_plots(trainer.validator.plots, 'val')
live.next_step()
_training_epoch = False
def on_train_end(trainer):
if live:
# At the end log the best metrics. It runs validator on the best model internally.
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr}
for metric, value in all_metrics.items():
live.log_metric(metric, value, plot=False)
_log_plots(trainer.plots, 'eval')
_log_plots(trainer.validator.plots, 'eval')
_log_confusion_matrix(trainer.validator)
if trainer.best.exists():
live.log_artifact(trainer.best, copy=True)
live.end()
callbacks = {
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_pretrain_routine_end': on_pretrain_routine_end,
'on_train_start': on_train_start,
'on_train_epoch_start': on_train_epoch_start,
'on_fit_epoch_end': on_fit_epoch_end,
'on_train_end': on_train_end} if dvclive else {}
Loading…
Cancel
Save