Support fuse-deconv-and-bn (#786)

single_channel
tripleMu 2 years ago committed by GitHub
parent fa8811dcee
commit 5a80ad98db
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -62,6 +62,9 @@ class ConvTranspose(nn.Module):
def forward(self, x): def forward(self, x):
return self.act(self.bn(self.conv_transpose(x))) return self.act(self.bn(self.conv_transpose(x)))
def forward_fuse(self, x):
return self.act(self.conv_transpose(x))
class DFL(nn.Module): class DFL(nn.Module):
# Integral module of Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391 # Integral module of Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391

@ -12,8 +12,8 @@ from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, Bot
GhostBottleneck, GhostConv, Segment) GhostBottleneck, GhostConv, Segment)
from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, yaml_load from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, yaml_load
from ultralytics.yolo.utils.checks import check_requirements, check_yaml from ultralytics.yolo.utils.checks import check_requirements, check_yaml
from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_weights, intersect_dicts, make_divisible, from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, fuse_deconv_and_bn, initialize_weights,
model_info, scale_img, time_sync) intersect_dicts, make_divisible, model_info, scale_img, time_sync)
class BaseModel(nn.Module): class BaseModel(nn.Module):
@ -100,6 +100,10 @@ class BaseModel(nn.Module):
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
delattr(m, 'bn') # remove batchnorm delattr(m, 'bn') # remove batchnorm
m.forward = m.forward_fuse # update forward m.forward = m.forward_fuse # update forward
if isinstance(m, ConvTranspose) and hasattr(m, 'bn'):
m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn)
delattr(m, 'bn') # remove batchnorm
m.forward = m.forward_fuse # update forward
self.info() self.info()
return self return self

@ -135,6 +135,30 @@ def fuse_conv_and_bn(conv, bn):
return fusedconv return fusedconv
def fuse_deconv_and_bn(deconv, bn):
fuseddconv = nn.ConvTranspose2d(deconv.in_channels,
deconv.out_channels,
kernel_size=deconv.kernel_size,
stride=deconv.stride,
padding=deconv.padding,
output_padding=deconv.output_padding,
dilation=deconv.dilation,
groups=deconv.groups,
bias=True).requires_grad_(False).to(deconv.weight.device)
# prepare filters
w_deconv = deconv.weight.clone().view(deconv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fuseddconv.weight.copy_(torch.mm(w_bn, w_deconv).view(fuseddconv.weight.shape))
# Prepare spatial bias
b_conv = torch.zeros(deconv.weight.size(1), device=deconv.weight.device) if deconv.bias is None else deconv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fuseddconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
return fuseddconv
def model_info(model, verbose=False, imgsz=640): def model_info(model, verbose=False, imgsz=640):
# Model information. imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320] # Model information. imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320]
n_p = get_num_params(model) n_p = get_num_params(model)

Loading…
Cancel
Save