standalone val (#56)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Ayush Chaurasia
2022-11-30 15:04:44 +05:30
committed by GitHub
parent 3a241e4cea
commit 5a52e7663a
16 changed files with 161 additions and 31 deletions

View File

@ -1,4 +1,4 @@
from ultralytics.yolo.v8.classify.train import ClassificationTrainer, train
from ultralytics.yolo.v8.classify.val import ClassificationValidator
from ultralytics.yolo.v8.classify.val import ClassificationValidator, val
__all__ = ["train"]

View File

@ -19,6 +19,13 @@ class ClassificationTrainer(BaseTrainer):
else:
model = ClassificationModel(model_cfg, weights, data["nc"])
ClassificationModel.reshape_outputs(model, data["nc"])
for m in model.modules():
if not weights and hasattr(m, 'reset_parameters'):
m.reset_parameters()
if isinstance(m, torch.nn.Dropout) and self.args.dropout is not None:
m.p = self.args.dropout # set dropout
for p in model.parameters():
p.requires_grad = True # for training
return model
def get_dataloader(self, dataset_path, batch_size, rank=0, mode="train"):

View File

@ -1,5 +1,8 @@
import hydra
import torch
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.engine.validator import BaseValidator
@ -24,6 +27,21 @@ class ClassificationValidator(BaseValidator):
top1, top5 = acc.mean(0).tolist()
return {"top1": top1, "top5": top5, "fitness": top5}
def get_dataloader(self, dataset_path, batch_size):
return build_classification_dataloader(path=dataset_path, imgsz=self.args.img_size, batch_size=batch_size)
@property
def metric_keys(self):
return ["top1", "top5"]
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def val(cfg):
cfg.data = cfg.data or "imagenette160"
cfg.model = cfg.model or "resnet18"
validator = ClassificationValidator(args=cfg)
validator(model=cfg.model)
if __name__ == "__main__":
val()