standalone val (#56)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Ayush Chaurasia
2022-11-30 15:04:44 +05:30
committed by GitHub
parent 3a241e4cea
commit 5a52e7663a
16 changed files with 161 additions and 31 deletions

View File

@ -0,0 +1,19 @@
import pandas as pd
def export_formats():
# YOLOv5 export formats
x = [
['PyTorch', '-', '.pt', True, True],
['TorchScript', 'torchscript', '.torchscript', True, True],
['ONNX', 'onnx', '.onnx', True, True],
['OpenVINO', 'openvino', '_openvino_model', True, False],
['TensorRT', 'engine', '.engine', False, True],
['CoreML', 'coreml', '.mlmodel', True, False],
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
['TensorFlow GraphDef', 'pb', '.pb', True, True],
['TensorFlow Lite', 'tflite', '.tflite', True, False],
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
['TensorFlow.js', 'tfjs', '_web_model', False, False],
['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])

View File

@ -25,7 +25,7 @@ import ultralytics.yolo.utils as utils
import ultralytics.yolo.utils.callbacks as callbacks
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.utils import LOGGER, ROOT, TQDM_BAR_FORMAT, colorstr
from ultralytics.yolo.utils.checks import print_args
from ultralytics.yolo.utils.checks import check_file, print_args
from ultralytics.yolo.utils.files import increment_path, save_yaml
from ultralytics.yolo.utils.modeling import get_model
from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, init_seeds, one_cycle, strip_optimizer
@ -299,13 +299,16 @@ class BaseTrainer:
"""
Get train, val path from data dict if it exists. Returns None if data format is not recognized
"""
return data["train"], data["val"]
return data["train"], data.get("val") or data.get("test")
def get_model(self, model: Union[str, Path]):
"""
load/create/download model for any task
"""
pretrained = not str(model).endswith(".yaml")
pretrained = True
if str(model).endswith(".yaml"):
model = check_file(model)
pretrained = False
return self.load_model(model_cfg=None if pretrained else model,
weights=get_model(model) if pretrained else None,
data=self.data) # model
@ -376,7 +379,7 @@ class BaseTrainer:
"""
To set or update model parameters before training.
"""
pass
self.model.names = self.data["names"]
def build_targets(self, preds, targets):
pass

View File

@ -5,11 +5,14 @@ import torch
from omegaconf import OmegaConf
from tqdm import tqdm
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import TQDM_BAR_FORMAT
from ultralytics.yolo.utils import LOGGER, TQDM_BAR_FORMAT
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.modeling import get_model
from ultralytics.yolo.utils.modeling.autobackend import AutoBackend
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import de_parallel, select_device
from ultralytics.yolo.utils.torch_utils import check_img_size, de_parallel, select_device
class BaseValidator:
@ -17,17 +20,18 @@ class BaseValidator:
Base validator class.
"""
def __init__(self, dataloader, save_dir=None, pbar=None, logger=None, args=None):
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
self.dataloader = dataloader
self.pbar = pbar
self.logger = logger or logging.getLogger()
self.logger = logger or LOGGER
self.args = args or OmegaConf.load(DEFAULT_CONFIG)
self.device = select_device(self.args.device, dataloader.batch_size)
self.save_dir = save_dir if save_dir is not None else \
increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok)
self.cuda = self.device.type != 'cpu'
self.model = None
self.data = None
self.device = None
self.batch_i = None
self.training = True
self.save_dir = save_dir if save_dir is not None else \
increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok)
def __call__(self, trainer=None, model=None):
"""
@ -36,14 +40,35 @@ class BaseValidator:
"""
self.training = trainer is not None
if self.training:
self.device = trainer.device
self.data = trainer.data
model = trainer.ema.ema or trainer.model
self.args.half &= self.device.type != 'cpu'
model = model.half() if self.args.half else model.float()
self.model = model
loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
else: # TODO: handle this when detectMultiBackend is supported
assert model is not None, "Either trainer or model is needed for validation"
# model = DetectMultiBacked(model)
# TODO: implement init_model_attributes()
self.device = select_device(self.args.device, self.args.batch_size)
self.args.half &= self.device.type != 'cpu'
model = AutoBackend(model, device=self.device, dnn=self.args.dnn, fp16=self.args.half)
self.model = model
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_img_size(self.args.img_size, s=stride)
if engine:
self.args.batch_size = model.batch_size
else:
self.device = model.device
if not (pt or jit):
self.args.batch_size = 1 # export.py models default to batch-size 1
self.logger.info(
f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
if self.args.data.endswith(".yaml"):
data = check_dataset_yaml(self.args.data)
else:
data = check_dataset(self.args.data)
self.dataloader = self.get_dataloader(data.get("val") or data.set("test"), self.args.batch_size)
model.eval()
@ -101,6 +126,9 @@ class BaseValidator:
return stats | trainer.label_loss_items(loss.cpu() / len(self.dataloader), prefix="val") \
if self.training else stats
def get_dataloader(self, dataset_path, batch_size):
raise Exception("get_dataloder function not implemented for this validator")
def preprocess(self, batch):
return batch