New `guess_model_task()` function (#614)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent 520825c4b2
commit 59d4335664
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
__version__ = "8.0.18"
__version__ = "8.0.19"
from ultralytics.yolo.engine.model import YOLO
from ultralytics.yolo.utils import ops

@ -251,7 +251,7 @@ class ClassificationModel(BaseModel):
ch=3,
nc=1000,
cutoff=10,
verbose=True): # yaml, model, number of classes, cutoff index
verbose=True): # yaml, model, channels, number of classes, cutoff index, verbose flag
super().__init__()
self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg, ch, nc, verbose)
@ -457,3 +457,53 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
ch = []
ch.append(c2)
return nn.Sequential(*layers), sorted(save)
def guess_model_task(model):
"""
Guess the task of a PyTorch model from its architecture or configuration.
Args:
model (nn.Module) or (dict): PyTorch model or model configuration in YAML format.
Returns:
str: Task of the model ('detect', 'segment', 'classify').
Raises:
SyntaxError: If the task of the model could not be determined.
"""
cfg, task = None, None
if isinstance(model, dict):
cfg = model
elif isinstance(model, nn.Module): # PyTorch model
for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml':
with contextlib.suppress(Exception):
cfg = eval(x)
break
# Guess from YAML dictionary
if cfg:
m = cfg["head"][-1][-2].lower() # output module name
if m in ["classify", "classifier", "cls", "fc"]:
task = "classify"
if m in ["detect"]:
task = "detect"
if m in ["segment"]:
task = "segment"
# Guess from PyTorch model
if task is None and isinstance(model, nn.Module):
for m in model.modules():
if isinstance(m, Detect):
task = "detect"
elif isinstance(m, Segment):
task = "segment"
elif isinstance(m, Classify):
task = "classify"
# Unable to determine task from model
if task is None:
raise SyntaxError("YOLO is unable to automatically guess model task. Explicitly define task for your model, "
"i.e. 'task=detect', 'task=segment' or 'task=classify'.")
else:
return task

@ -66,7 +66,7 @@ import torch
import ultralytics
from ultralytics.nn.modules import Detect, Segment
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, guess_model_task
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
from ultralytics.yolo.data.utils import check_det_dataset
@ -74,7 +74,7 @@ from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, callbacks, colorstr, get
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
from ultralytics.yolo.utils.files import file_size
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import guess_task_from_model_yaml, select_device, smart_inference_mode
from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode
MACOS = platform.system() == 'Darwin' # macOS environment
@ -235,7 +235,7 @@ class Exporter:
# Finish
f = [str(x) for x in f if x] # filter out '' and None
if any(f):
task = guess_task_from_model_yaml(model)
task = guess_model_task(model)
s = "-WARNING ⚠️ not yet supported for YOLOv8 exported models"
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"

@ -3,12 +3,13 @@
from pathlib import Path
from ultralytics import yolo # noqa
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight
from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight,
guess_model_task)
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, callbacks, yaml_load
from ultralytics.yolo.utils.checks import check_yaml
from ultralytics.yolo.utils.torch_utils import guess_task_from_model_yaml, smart_inference_mode
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
# Map head to model, trainer, validator, and predictor classes
MODEL_MAP = {
@ -73,9 +74,9 @@ class YOLO:
"""
cfg = check_yaml(cfg) # check YAML
cfg_dict = yaml_load(cfg, append_filename=True) # model dict
self.task = guess_task_from_model_yaml(cfg_dict)
self.task = guess_model_task(cfg_dict)
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \
self._guess_ops_from_task(self.task)
self._assign_ops_from_task(self.task)
self.model = self.ModelClass(cfg_dict, verbose=verbose) # initialize
self.cfg = cfg
@ -92,7 +93,7 @@ class YOLO:
self.overrides = self.model.args
self._reset_ckpt_args(self.overrides)
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \
self._guess_ops_from_task(self.task)
self._assign_ops_from_task(self.task)
def reset(self):
"""
@ -217,7 +218,7 @@ class YOLO:
"""
self.model.to(device)
def _guess_ops_from_task(self, task):
def _assign_ops_from_task(self, task):
model_class, train_lit, val_lit, pred_lit = MODEL_MAP[task]
# warning: eval is unsafe. Use with caution
trainer_class = eval(train_lit.replace("TYPE", f"{self.type}"))

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
"""
Auto-batch utils
AutoBatch utils
"""
from copy import deepcopy

@ -308,23 +308,6 @@ def strip_optimizer(f='best.pt', s=''):
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
def guess_task_from_model_yaml(model):
try:
cfg = model if isinstance(model, dict) else model.yaml # model cfg dict
m = cfg["head"][-1][-2].lower() # output module name
task = None
if m in ["classify", "classifier", "cls", "fc"]:
task = "classify"
if m in ["detect"]:
task = "detect"
if m in ["segment"]:
task = "segment"
except Exception as e:
raise SyntaxError('Unknown task. Define task explicitly, i.e. task=detect when running your command. '
'Valid tasks are detect, segment, classify.') from e
return task
def profile(input, ops, n=10, device=None):
""" YOLOv8 speed/memory/FLOPs profiler
Usage:

Loading…
Cancel
Save