ultralytics 8.0.73
minor fixes (#1929)
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: joseliraGB <122470533+joseliraGB@users.noreply.github.com>
This commit is contained in:
@ -5,14 +5,10 @@ import torch
|
||||
from ultralytics.yolo.engine.predictor import BasePredictor
|
||||
from ultralytics.yolo.engine.results import Results
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT
|
||||
from ultralytics.yolo.utils.plotting import Annotator
|
||||
|
||||
|
||||
class ClassificationPredictor(BasePredictor):
|
||||
|
||||
def get_annotator(self, img):
|
||||
return Annotator(img, example=str(self.model.names), pil=True)
|
||||
|
||||
def preprocess(self, img):
|
||||
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
|
||||
return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
||||
@ -27,43 +23,6 @@ class ClassificationPredictor(BasePredictor):
|
||||
|
||||
return results
|
||||
|
||||
def write_results(self, idx, results, batch):
|
||||
p, im, im0 = batch
|
||||
log_string = ''
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
self.seen += 1
|
||||
im0 = im0.copy()
|
||||
if self.source_type.webcam or self.source_type.from_img: # batch_size >= 1
|
||||
log_string += f'{idx}: '
|
||||
frame = self.dataset.count
|
||||
else:
|
||||
frame = getattr(self.dataset, 'frame', 0)
|
||||
|
||||
self.data_path = p
|
||||
# save_path = str(self.save_dir / p.name) # im.jpg
|
||||
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
|
||||
log_string += '%gx%g ' % im.shape[2:] # print string
|
||||
|
||||
result = results[idx]
|
||||
if len(result) == 0:
|
||||
return log_string
|
||||
prob = result.probs
|
||||
# Print results
|
||||
n5 = min(len(self.model.names), 5)
|
||||
top5i = prob.argsort(0, descending=True)[:n5].tolist() # top 5 indices
|
||||
log_string += f"{', '.join(f'{self.model.names[j]} {prob[j]:.2f}' for j in top5i)}, "
|
||||
|
||||
# write
|
||||
if self.args.save or self.args.show: # Add bbox to image
|
||||
self.plotted_img = result.plot()
|
||||
if self.args.save_txt: # Write to file
|
||||
text = '\n'.join(f'{prob[j]:.2f} {self.model.names[j]}' for j in top5i)
|
||||
with open(f'{self.txt_path}.txt', 'a') as f:
|
||||
f.write(text + '\n')
|
||||
|
||||
return log_string
|
||||
|
||||
|
||||
def predict(cfg=DEFAULT_CFG, use_python=False):
|
||||
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18"
|
||||
|
Reference in New Issue
Block a user