|
|
|
@ -147,7 +147,6 @@ class BasePredictor:
|
|
|
|
|
log_string = ''
|
|
|
|
|
if len(im.shape) == 3:
|
|
|
|
|
im = im[None] # expand for batch dim
|
|
|
|
|
self.seen += 1
|
|
|
|
|
if self.source_type.webcam or self.source_type.from_img: # batch_size >= 1
|
|
|
|
|
log_string += f'{idx}: '
|
|
|
|
|
frame = self.dataset.count
|
|
|
|
@ -251,11 +250,14 @@ class BasePredictor:
|
|
|
|
|
# Visualize, save, write results
|
|
|
|
|
n = len(im0s)
|
|
|
|
|
for i in range(n):
|
|
|
|
|
self.seen += 1
|
|
|
|
|
self.results[i].speed = {
|
|
|
|
|
'preprocess': profilers[0].dt * 1E3 / n,
|
|
|
|
|
'inference': profilers[1].dt * 1E3 / n,
|
|
|
|
|
'postprocess': profilers[2].dt * 1E3 / n}
|
|
|
|
|
if self.source_type.tensor: # skip write, show and plot operations if input is raw tensor
|
|
|
|
|
if self.args.save or self.args.save_txt or self.args.show:
|
|
|
|
|
LOGGER.warning('WARNING ⚠️ save, save_txt and show argument not enabled for tensor inference.')
|
|
|
|
|
continue
|
|
|
|
|
p, im0 = path[i], im0s[i].copy()
|
|
|
|
|
p = Path(p)
|
|
|
|
|