Cli support (#50)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
single_channel
Ayush Chaurasia 2 years ago committed by GitHub
parent 4291b9c31c
commit 512a225ce8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -94,8 +94,8 @@ jobs:
- name: Test segmentation
shell: bash # for Windows compatibility
run: |
python ultralytics/yolo/v8/segment/train.py model=yolov5n-seg.yaml data=coco128-seg.yaml epochs=1 img_size=64
yolo task=segment mode=train model=yolov5n-seg.yaml data=coco128-seg.yaml epochs=1 img_size=64
- name: Test classification
shell: bash # for Windows compatibility
run: |
python ultralytics/yolo/v8/classify/train.py model=resnet18 data=mnist160 epochs=1 img_size=32
yolo task=classify mode=train model=resnet18 data=mnist160 epochs=1 img_size=32

2
.gitignore vendored

@ -132,3 +132,5 @@ dmypy.json
datasets/
ultralytics-yolo/
runs/
.DS_Store

@ -3,18 +3,32 @@
### Install
```bash
pip install ultralytics
```
Development
```
git clone https://github.com/ultralytics/ultralytics
cd ultralytics
python -m pip install --upgrade pip wheel
pip install . # (dev)
# pip install ultralytics (production)
pip install -e .
```
### Usage
## Usage
### 1. CLI
To simply use the latest Ultralytics YOLO models
```bash
yolo task=detect mode=train model=s.yaml ...
classify infer s-cls.yaml
segment val s-seg.yaml
```
### 2. Python SDK
To use pythonic interface of Ultralytics YOLO model
```python
import ultralytics
from ultralytics import HUB, YOLO
from ultralytics import YOLO
ultralytics.checks()
model = YOLO()
model.new("s-seg.yaml") # automatically detects task type
model.load("s-seg.pt") # load checkpoint
model.train(data="coco128-segments", epochs=1, lr0=0.01, ...)
```
If you're looking to modify YOLO for R&D or to build on top of it, refer to [Using Trainer]() Guide on our docs.

@ -46,4 +46,7 @@ setup(
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Scientific/Engineering :: Image Recognition", "Operating System :: POSIX :: Linux",
"Operating System :: MacOS", "Operating System :: Microsoft :: Windows"],
keywords="machine-learning, deep-learning, vision, ML, DL, AI, YOLO, YOLOv3, YOLOv5, YOLOv8, HUB, Ultralytics")
keywords="machine-learning, deep-learning, vision, ML, DL, AI, YOLO, YOLOv3, YOLOv5, YOLOv8, HUB, Ultralytics",
entry_points={
'console_scripts': [
'yolo = ultralytics.yolo.__init__:cli',],})

@ -1 +1 @@
__version__ = "0.0.1.dev0"
__version__ = "8.0.0.dev0"

@ -1,7 +1,39 @@
import ultralytics.yolo.v8 as v8
import hydra
import ultralytics
import ultralytics.yolo.v8 as yolo
from .engine.model import YOLO
from .engine.trainer import BaseTrainer
from .engine.trainer import DEFAULT_CONFIG, BaseTrainer
from .engine.validator import BaseValidator
from .utils import LOGGER
__all__ = ["BaseTrainer", "BaseValidator", "YOLO"] # allow simpler import
@hydra.main(version_base=None, config_path="utils/configs", config_name="default")
def cli(cfg):
LOGGER.info(f"using Ultralytics YOLO v{ultralytics.__version__}")
module_file = None
if cfg.task.lower() == "detect":
module_file = yolo.detect
elif cfg.task.lower() == "segment":
module_file = yolo.segment
elif cfg.task.lower() == "classify":
module_file = yolo.classify
if not module_file:
raise Exception("task not recognized. Choices are `'detect', 'segment', 'classify'`")
module_function = None
if cfg.mode.lower() == "train":
module_function = module_file.train
elif cfg.mode.lower() == "val":
module_function = module_file.val
elif cfg.mode.lower() == "infer":
module_function = module_file.infer
if not module_function:
raise Exception("mode not recognized. Choices are `'train', 'val', 'infer'`")
module_function(cfg)

@ -1,6 +1,9 @@
# YOLO 🚀 by Ultralytics, GPL-3.0 license
# Default training settings and hyperparameters for medium-augmentation COCO training
# Task and Mode
task: "classify" # choices=['detect', 'segment', 'classify']
mode: "train" # choice=['train', 'val', 'infer']
# Train settings -------------------------------------------------------------------------------------------------------
model: null # i.e. yolov5s.pt, yolo.yaml
@ -36,7 +39,6 @@ max_det: 300
half: True
plots: False
save_txt: False
task: 'val'
# Hyperparameters ------------------------------------------------------------------------------------------------------
lr0: 0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)

@ -1,4 +1,4 @@
from ultralytics.yolo.v8.classify.train import ClassificationTrainer
from ultralytics.yolo.v8.classify.train import ClassificationTrainer, train
from ultralytics.yolo.v8.classify.val import ClassificationValidator
__all__ = ["train"]

@ -1,2 +1,2 @@
from ultralytics.yolo.v8.segment.train import SegmentationTrainer
from ultralytics.yolo.v8.segment.train import SegmentationTrainer, train
from ultralytics.yolo.v8.segment.val import SegmentationValidator

Loading…
Cancel
Save