`ultralytics 8.0.77` Ray[Tune] for hyperparameter optimization (#2014)
Co-authored-by: JF Chen <k-2feng@hotmail.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>single_channel
parent
4916014af2
commit
5065ca36a8
@ -0,0 +1,17 @@
|
|||||||
|
try:
|
||||||
|
import ray
|
||||||
|
from ray import tune
|
||||||
|
from ray.air import session
|
||||||
|
except (ImportError, AssertionError):
|
||||||
|
tune = None
|
||||||
|
|
||||||
|
|
||||||
|
def on_fit_epoch_end(trainer):
|
||||||
|
if ray.tune.is_session_enabled():
|
||||||
|
metrics = trainer.metrics
|
||||||
|
metrics['epoch'] = trainer.epoch
|
||||||
|
session.report(metrics)
|
||||||
|
|
||||||
|
|
||||||
|
callbacks = {
|
||||||
|
'on_fit_epoch_end': on_fit_epoch_end, } if tune else {}
|
@ -0,0 +1,48 @@
|
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||||
|
|
||||||
|
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||||
|
|
||||||
|
try:
|
||||||
|
import wandb as wb
|
||||||
|
|
||||||
|
assert hasattr(wb, '__version__')
|
||||||
|
except (ImportError, AssertionError):
|
||||||
|
wb = None
|
||||||
|
|
||||||
|
|
||||||
|
def on_pretrain_routine_start(trainer):
|
||||||
|
wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(
|
||||||
|
trainer.args)) if not wb.run else wb.run
|
||||||
|
|
||||||
|
|
||||||
|
def on_fit_epoch_end(trainer):
|
||||||
|
wb.run.log(trainer.metrics, step=trainer.epoch + 1)
|
||||||
|
if trainer.epoch == 0:
|
||||||
|
model_info = {
|
||||||
|
'model/parameters': get_num_params(trainer.model),
|
||||||
|
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||||
|
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||||
|
wb.run.log(model_info, step=trainer.epoch + 1)
|
||||||
|
|
||||||
|
|
||||||
|
def on_train_epoch_end(trainer):
|
||||||
|
wb.run.log(trainer.label_loss_items(trainer.tloss, prefix='train'), step=trainer.epoch + 1)
|
||||||
|
wb.run.log(trainer.lr, step=trainer.epoch + 1)
|
||||||
|
if trainer.epoch == 1:
|
||||||
|
wb.run.log({f.stem: wb.Image(str(f))
|
||||||
|
for f in trainer.save_dir.glob('train_batch*.jpg')},
|
||||||
|
step=trainer.epoch + 1)
|
||||||
|
|
||||||
|
|
||||||
|
def on_train_end(trainer):
|
||||||
|
art = wb.Artifact(type='model', name=f'run_{wb.run.id}_model')
|
||||||
|
if trainer.best.exists():
|
||||||
|
art.add_file(trainer.best)
|
||||||
|
wb.run.log_artifact(art)
|
||||||
|
|
||||||
|
|
||||||
|
callbacks = {
|
||||||
|
'on_pretrain_routine_start': on_pretrain_routine_start,
|
||||||
|
'on_train_epoch_end': on_train_epoch_end,
|
||||||
|
'on_fit_epoch_end': on_fit_epoch_end,
|
||||||
|
'on_train_end': on_train_end} if wb else {}
|
@ -0,0 +1,43 @@
|
|||||||
|
from ultralytics.yolo.utils import LOGGER
|
||||||
|
|
||||||
|
try:
|
||||||
|
from ray import tune
|
||||||
|
from ray.air import RunConfig, session # noqa
|
||||||
|
from ray.air.integrations.wandb import WandbLoggerCallback # noqa
|
||||||
|
from ray.tune.schedulers import ASHAScheduler # noqa
|
||||||
|
from ray.tune.schedulers import AsyncHyperBandScheduler as AHB # noqa
|
||||||
|
|
||||||
|
except ImportError:
|
||||||
|
LOGGER.info("Tuning hyperparameters requires ray/tune. Install using `pip install 'ray[tune]'`")
|
||||||
|
tune = None
|
||||||
|
|
||||||
|
default_space = {
|
||||||
|
# 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'RMSProp']),
|
||||||
|
'lr0': tune.uniform(1e-5, 1e-1),
|
||||||
|
'lrf': tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
||||||
|
'momentum': tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1
|
||||||
|
'weight_decay': tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4
|
||||||
|
'warmup_epochs': tune.uniform(0.0, 5.0), # warmup epochs (fractions ok)
|
||||||
|
'warmup_momentum': tune.uniform(0.0, 0.95), # warmup initial momentum
|
||||||
|
'box': tune.uniform(0.02, 0.2), # box loss gain
|
||||||
|
'cls': tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels)
|
||||||
|
'fl_gamma': tune.uniform(0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
||||||
|
'hsv_h': tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
||||||
|
'hsv_s': tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
||||||
|
'hsv_v': tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction)
|
||||||
|
'degrees': tune.uniform(0.0, 45.0), # image rotation (+/- deg)
|
||||||
|
'translate': tune.uniform(0.0, 0.9), # image translation (+/- fraction)
|
||||||
|
'scale': tune.uniform(0.0, 0.9), # image scale (+/- gain)
|
||||||
|
'shear': tune.uniform(0.0, 10.0), # image shear (+/- deg)
|
||||||
|
'perspective': tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
||||||
|
'flipud': tune.uniform(0.0, 1.0), # image flip up-down (probability)
|
||||||
|
'fliplr': tune.uniform(0.0, 1.0), # image flip left-right (probability)
|
||||||
|
'mosaic': tune.uniform(0.0, 1.0), # image mixup (probability)
|
||||||
|
'mixup': tune.uniform(0.0, 1.0), # image mixup (probability)
|
||||||
|
'copy_paste': tune.uniform(0.0, 1.0)} # segment copy-paste (probability)
|
||||||
|
|
||||||
|
task_metric_map = {
|
||||||
|
'detect': 'metrics/mAP50-95(B)',
|
||||||
|
'segment': 'metrics/mAP50-95(M)',
|
||||||
|
'classify': 'top1_acc',
|
||||||
|
'pose': None}
|
Loading…
Reference in new issue