ultralytics 8.0.77 Ray[Tune] for hyperparameter optimization (#2014)

Co-authored-by: JF Chen <k-2feng@hotmail.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2023-04-14 01:28:34 +02:00
committed by GitHub
parent 4916014af2
commit 5065ca36a8
12 changed files with 205 additions and 13 deletions

View File

@ -154,9 +154,11 @@ def add_integration_callbacks(instance):
from .comet import callbacks as comet_callbacks
from .hub import callbacks as hub_callbacks
from .mlflow import callbacks as mf_callbacks
from .raytune import callbacks as tune_callbacks
from .tensorboard import callbacks as tb_callbacks
from .wb import callbacks as wb_callbacks
for x in clearml_callbacks, comet_callbacks, hub_callbacks, tb_callbacks, mf_callbacks:
for x in clearml_callbacks, comet_callbacks, hub_callbacks, tb_callbacks, mf_callbacks, tune_callbacks, wb_callbacks:
for k, v in x.items():
if v not in instance.callbacks[k]: # prevent duplicate callbacks addition
instance.callbacks[k].append(v) # callback[name].append(func)

View File

@ -0,0 +1,17 @@
try:
import ray
from ray import tune
from ray.air import session
except (ImportError, AssertionError):
tune = None
def on_fit_epoch_end(trainer):
if ray.tune.is_session_enabled():
metrics = trainer.metrics
metrics['epoch'] = trainer.epoch
session.report(metrics)
callbacks = {
'on_fit_epoch_end': on_fit_epoch_end, } if tune else {}

View File

@ -0,0 +1,48 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
try:
import wandb as wb
assert hasattr(wb, '__version__')
except (ImportError, AssertionError):
wb = None
def on_pretrain_routine_start(trainer):
wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(
trainer.args)) if not wb.run else wb.run
def on_fit_epoch_end(trainer):
wb.run.log(trainer.metrics, step=trainer.epoch + 1)
if trainer.epoch == 0:
model_info = {
'model/parameters': get_num_params(trainer.model),
'model/GFLOPs': round(get_flops(trainer.model), 3),
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
wb.run.log(model_info, step=trainer.epoch + 1)
def on_train_epoch_end(trainer):
wb.run.log(trainer.label_loss_items(trainer.tloss, prefix='train'), step=trainer.epoch + 1)
wb.run.log(trainer.lr, step=trainer.epoch + 1)
if trainer.epoch == 1:
wb.run.log({f.stem: wb.Image(str(f))
for f in trainer.save_dir.glob('train_batch*.jpg')},
step=trainer.epoch + 1)
def on_train_end(trainer):
art = wb.Artifact(type='model', name=f'run_{wb.run.id}_model')
if trainer.best.exists():
art.add_file(trainer.best)
wb.run.log_artifact(art)
callbacks = {
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_train_epoch_end': on_train_epoch_end,
'on_fit_epoch_end': on_fit_epoch_end,
'on_train_end': on_train_end} if wb else {}