`ultralytics 8.0.71` updates and fixes (#1907)

Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Pavel Bugneac <50273042+pavelbugneac@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent c38b17a0d8
commit 4e997013bc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,11 +1,11 @@
blank_issues_enabled: true blank_issues_enabled: true
contact_links: contact_links:
- name: 📄Docs - name: 📄 Docs
url: https://docs.ultralytics.com/ url: https://docs.ultralytics.com/
about: Full Ultralytics YOLOv8 Documentation about: Full Ultralytics YOLOv8 Documentation
- name: 💬 Forum - name: 💬 Forum
url: https://community.ultralytics.com/ url: https://community.ultralytics.com/
about: Ask on Ultralytics Community Forum about: Ask on Ultralytics Community Forum
- name: Stack Overflow - name: 🎧 Discord
url: https://stackoverflow.com/search?q=YOLOv8 url: https://discord.gg/n6cFeSPZdD
about: Ask on Stack Overflow with 'YOLOv8' tag about: Ask on Ultralytics Discord

@ -23,7 +23,7 @@ full list of export arguments.
```python ```python
from ultralytics.yolo.utils.benchmarks import benchmark from ultralytics.yolo.utils.benchmarks import benchmark
# Benchmark # Benchmark on GPU
benchmark(model='yolov8n.pt', imgsz=640, half=False, device=0) benchmark(model='yolov8n.pt', imgsz=640, half=False, device=0)
``` ```
=== "CLI" === "CLI"
@ -63,3 +63,5 @@ Benchmarks will attempt to run automatically on all possible export formats belo
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | | [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ |
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ | | [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ |
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ | | [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ |
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.

@ -90,7 +90,6 @@ task.
| `dfl` | `1.5` | dfl loss gain | | `dfl` | `1.5` | dfl loss gain |
| `pose` | `12.0` | pose loss gain (pose-only) | | `pose` | `12.0` | pose loss gain (pose-only) |
| `kobj` | `2.0` | keypoint obj loss gain (pose-only) | | `kobj` | `2.0` | keypoint obj loss gain (pose-only) |
| `fl_gamma` | `0.0` | focal loss gamma (efficientDet default gamma=1.5) |
| `label_smoothing` | `0.0` | label smoothing (fraction) | | `label_smoothing` | `0.0` | label smoothing (fraction) |
| `nbs` | `64` | nominal batch size | | `nbs` | `64` | nominal batch size |
| `overlap_mask` | `True` | masks should overlap during training (segment train only) | | `overlap_mask` | `True` | masks should overlap during training (segment train only) |

@ -112,7 +112,6 @@ The training settings for YOLO models encompass various hyperparameters and conf
| `dfl` | `1.5` | dfl loss gain | | `dfl` | `1.5` | dfl loss gain |
| `pose` | `12.0` | pose loss gain (pose-only) | | `pose` | `12.0` | pose loss gain (pose-only) |
| `kobj` | `2.0` | keypoint obj loss gain (pose-only) | | `kobj` | `2.0` | keypoint obj loss gain (pose-only) |
| `fl_gamma` | `0.0` | focal loss gamma (efficientDet default gamma=1.5) |
| `label_smoothing` | `0.0` | label smoothing (fraction) | | `label_smoothing` | `0.0` | label smoothing (fraction) |
| `nbs` | `64` | nominal batch size | | `nbs` | `64` | nominal batch size |
| `overlap_mask` | `True` | masks should overlap during training (segment train only) | | `overlap_mask` | `True` | masks should overlap during training (segment train only) |

@ -296,7 +296,7 @@
"name": "stdout", "name": "stdout",
"text": [ "text": [
"Ultralytics YOLOv8.0.57 🚀 Python-3.9.16 torch-1.13.1+cu116 CUDA:0 (Tesla T4, 15102MiB)\n", "Ultralytics YOLOv8.0.57 🚀 Python-3.9.16 torch-1.13.1+cu116 CUDA:0 (Tesla T4, 15102MiB)\n",
"\u001b[34m\u001b[1myolo/engine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8n.pt, data=coco128.yaml, epochs=3, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=None, exist_ok=False, pretrained=False, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, image_weights=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, hide_labels=False, hide_conf=False, vid_stride=1, line_thickness=3, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, fl_gamma=0.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, tracker=botsort.yaml, save_dir=runs/detect/train\n", "\u001b[34m\u001b[1myolo/engine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8n.pt, data=coco128.yaml, epochs=3, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=None, exist_ok=False, pretrained=False, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, image_weights=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, hide_labels=False, hide_conf=False, vid_stride=1, line_thickness=3, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, tracker=botsort.yaml, save_dir=runs/detect/train\n",
"\n", "\n",
" from n params module arguments \n", " from n params module arguments \n",
" 0 -1 1 464 ultralytics.nn.modules.Conv [3, 16, 3, 2] \n", " 0 -1 1 464 ultralytics.nn.modules.Conv [3, 16, 3, 2] \n",

@ -205,18 +205,33 @@ def test_predict_callback_and_setup():
def test_result(): def test_result():
model = YOLO('yolov8n-pose.pt')
res = model([SOURCE, SOURCE])
res[0].plot(show_conf=False) # raises warning
res[0].plot(conf=True, boxes=False)
res[0].plot(pil=True)
res[0] = res[0].cpu().numpy()
print(res[0].path, res[0].keypoints)
model = YOLO('yolov8n-seg.pt') model = YOLO('yolov8n-seg.pt')
res = model([SOURCE, SOURCE]) res = model([SOURCE, SOURCE])
res[0].plot(show_conf=False) # raises warning res[0].plot(show_conf=False) # raises warning
res[0].plot(conf=True, boxes=False, masks=True) res[0].plot(conf=True, boxes=False, masks=True)
res[0].plot(pil=True)
res[0] = res[0].cpu().numpy() res[0] = res[0].cpu().numpy()
print(res[0].path, res[0].masks.masks) print(res[0].path, res[0].masks.masks)
model = YOLO('yolov8n.pt') model = YOLO('yolov8n.pt')
res = model(SOURCE) res = model(SOURCE)
res[0].plot(pil=True)
res[0].plot() res[0].plot()
res[0] = res[0].cpu().numpy()
print(res[0].path) print(res[0].path)
model = YOLO('yolov8n-cls.pt') model = YOLO('yolov8n-cls.pt')
res = model(SOURCE) res = model(SOURCE)
res[0].plot(probs=False) res[0].plot(probs=False)
res[0].plot(pil=True)
res[0].plot()
res[0] = res[0].cpu().numpy()
print(res[0].path) print(res[0].path)

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license # Ultralytics YOLO 🚀, GPL-3.0 license
__version__ = '8.0.70' __version__ = '8.0.71'
from ultralytics.hub import start from ultralytics.hub import start
from ultralytics.yolo.engine.model import YOLO from ultralytics.yolo.engine.model import YOLO

@ -1,5 +1,7 @@
# Ultralytics YOLO 🚀, GPL-3.0 license # Ultralytics YOLO 🚀, GPL-3.0 license
from functools import partial
import torch import torch
from ultralytics.yolo.utils import IterableSimpleNamespace, yaml_load from ultralytics.yolo.utils import IterableSimpleNamespace, yaml_load
@ -10,7 +12,19 @@ from .trackers import BOTSORT, BYTETracker
TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT} TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT}
def on_predict_start(predictor): def on_predict_start(predictor, persist=False):
"""
Initialize trackers for object tracking during prediction.
Args:
predictor (object): The predictor object to initialize trackers for.
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False.
Raises:
AssertionError: If the tracker_type is not 'bytetrack' or 'botsort'.
"""
if hasattr(predictor, 'trackers') and persist:
return
tracker = check_yaml(predictor.args.tracker) tracker = check_yaml(predictor.args.tracker)
cfg = IterableSimpleNamespace(**yaml_load(tracker)) cfg = IterableSimpleNamespace(**yaml_load(tracker))
assert cfg.tracker_type in ['bytetrack', 'botsort'], \ assert cfg.tracker_type in ['bytetrack', 'botsort'], \
@ -38,6 +52,14 @@ def on_predict_postprocess_end(predictor):
predictor.results[i].update(boxes=torch.as_tensor(tracks[:, :-1])) predictor.results[i].update(boxes=torch.as_tensor(tracks[:, :-1]))
def register_tracker(model): def register_tracker(model, persist):
model.add_callback('on_predict_start', on_predict_start) """
Register tracking callbacks to the model for object tracking during prediction.
Args:
model (object): The model object to register tracking callbacks for.
persist (bool): Whether to persist the trackers if they already exist.
"""
model.add_callback('on_predict_start', partial(on_predict_start, persist=persist))
model.add_callback('on_predict_postprocess_end', on_predict_postprocess_end) model.add_callback('on_predict_postprocess_end', on_predict_postprocess_end)

@ -277,12 +277,13 @@ class BYTETracker:
self.lost_stracks = self.sub_stracks(self.lost_stracks, self.tracked_stracks) self.lost_stracks = self.sub_stracks(self.lost_stracks, self.tracked_stracks)
self.lost_stracks.extend(lost_stracks) self.lost_stracks.extend(lost_stracks)
self.lost_stracks = self.sub_stracks(self.lost_stracks, self.removed_stracks) self.lost_stracks = self.sub_stracks(self.lost_stracks, self.removed_stracks)
self.removed_stracks.extend(removed_stracks)
self.tracked_stracks, self.lost_stracks = self.remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks) self.tracked_stracks, self.lost_stracks = self.remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
output = [ self.removed_stracks.extend(removed_stracks)
track.tlbr.tolist() + [track.track_id, track.score, track.cls, track.idx] for track in self.tracked_stracks if len(self.removed_stracks) > 1000:
if track.is_activated] self.removed_stracks = self.removed_stracks[-999:] # clip remove stracks to 1000 maximum
return np.asarray(output, dtype=np.float32) return np.asarray(
[x.tlbr.tolist() + [x.track_id, x.score, x.cls, x.idx] for x in self.tracked_stracks if x.is_activated],
dtype=np.float32)
def get_kalmanfilter(self): def get_kalmanfilter(self):
return KalmanFilterXYAH() return KalmanFilterXYAH()
@ -319,12 +320,16 @@ class BYTETracker:
@staticmethod @staticmethod
def sub_stracks(tlista, tlistb): def sub_stracks(tlista, tlistb):
""" DEPRECATED CODE in https://github.com/ultralytics/ultralytics/pull/1890/
stracks = {t.track_id: t for t in tlista} stracks = {t.track_id: t for t in tlista}
for t in tlistb: for t in tlistb:
tid = t.track_id tid = t.track_id
if stracks.get(tid, 0): if stracks.get(tid, 0):
del stracks[tid] del stracks[tid]
return list(stracks.values()) return list(stracks.values())
"""
track_ids_b = {t.track_id for t in tlistb}
return [t for t in tlista if t.track_id not in track_ids_b]
@staticmethod @staticmethod
def remove_duplicate_stracks(stracksa, stracksb): def remove_duplicate_stracks(stracksa, stracksb):

@ -63,7 +63,7 @@ CLI_HELP_MSG = \
""" """
# Define keys for arg type checks # Define keys for arg type checks
CFG_FLOAT_KEYS = 'warmup_epochs', 'box', 'cls', 'dfl', 'degrees', 'shear', 'fl_gamma' CFG_FLOAT_KEYS = 'warmup_epochs', 'box', 'cls', 'dfl', 'degrees', 'shear'
CFG_FRACTION_KEYS = ('dropout', 'iou', 'lr0', 'lrf', 'momentum', 'weight_decay', 'warmup_momentum', 'warmup_bias_lr', CFG_FRACTION_KEYS = ('dropout', 'iou', 'lr0', 'lrf', 'momentum', 'weight_decay', 'warmup_momentum', 'warmup_bias_lr',
'label_smoothing', 'hsv_h', 'hsv_s', 'hsv_v', 'translate', 'scale', 'perspective', 'flipud', 'label_smoothing', 'hsv_h', 'hsv_s', 'hsv_v', 'translate', 'scale', 'perspective', 'flipud',
'fliplr', 'mosaic', 'mixup', 'copy_paste', 'conf', 'iou') # fractional floats limited to 0.0 - 1.0 'fliplr', 'mosaic', 'mixup', 'copy_paste', 'conf', 'iou') # fractional floats limited to 0.0 - 1.0

@ -90,7 +90,6 @@ cls: 0.5 # cls loss gain (scale with pixels)
dfl: 1.5 # dfl loss gain dfl: 1.5 # dfl loss gain
pose: 12.0 # pose loss gain pose: 12.0 # pose loss gain
kobj: 1.0 # keypoint obj loss gain kobj: 1.0 # keypoint obj loss gain
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
label_smoothing: 0.0 # label smoothing (fraction) label_smoothing: 0.0 # label smoothing (fraction)
nbs: 64 # nominal batch size nbs: 64 # nominal batch size
hsv_h: 0.015 # image HSV-Hue augmentation (fraction) hsv_h: 0.015 # image HSV-Hue augmentation (fraction)

@ -93,7 +93,8 @@ def build_dataloader(cfg, batch, img_path, data_info, stride=32, rect=False, ran
loader = DataLoader if cfg.image_weights or cfg.close_mosaic else InfiniteDataLoader # allow attribute updates loader = DataLoader if cfg.image_weights or cfg.close_mosaic else InfiniteDataLoader # allow attribute updates
generator = torch.Generator() generator = torch.Generator()
generator.manual_seed(6148914691236517205 + RANK) generator.manual_seed(6148914691236517205 + RANK)
return loader(dataset=dataset, return loader(
dataset=dataset,
batch_size=batch, batch_size=batch,
shuffle=shuffle and sampler is None, shuffle=shuffle and sampler is None,
num_workers=nw, num_workers=nw,
@ -101,6 +102,7 @@ def build_dataloader(cfg, batch, img_path, data_info, stride=32, rect=False, ran
pin_memory=PIN_MEMORY, pin_memory=PIN_MEMORY,
collate_fn=getattr(dataset, 'collate_fn', None), collate_fn=getattr(dataset, 'collate_fn', None),
worker_init_fn=seed_worker, worker_init_fn=seed_worker,
persistent_workers=(nw > 0) and (loader == DataLoader), # persist workers if using default PyTorch DataLoader
generator=generator), dataset generator=generator), dataset

@ -37,7 +37,7 @@ class YOLODataset(BaseDataset):
single_cls (bool): if True, single class training is used (default: False). single_cls (bool): if True, single class training is used (default: False).
use_segments (bool): if True, segmentation masks are used as labels (default: False). use_segments (bool): if True, segmentation masks are used as labels (default: False).
use_keypoints (bool): if True, keypoints are used as labels (default: False). use_keypoints (bool): if True, keypoints are used as labels (default: False).
names (list): class names (default: None). names (dict): A dictionary of class names. (default: None).
Returns: Returns:
A PyTorch dataset object that can be used for training an object detection or segmentation model. A PyTorch dataset object that can be used for training an object detection or segmentation model.

@ -138,7 +138,7 @@ class Exporter:
overrides (dict, optional): Configuration overrides. Defaults to None. overrides (dict, optional): Configuration overrides. Defaults to None.
""" """
self.args = get_cfg(cfg, overrides) self.args = get_cfg(cfg, overrides)
self.callbacks = _callbacks if _callbacks else callbacks.get_default_callbacks() self.callbacks = _callbacks or callbacks.get_default_callbacks()
callbacks.add_integration_callbacks(self) callbacks.add_integration_callbacks(self)
@smart_inference_mode() @smart_inference_mode()
@ -379,6 +379,7 @@ class Exporter:
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
return f, None return f, None
@try_export
def _export_coreml(self, prefix=colorstr('CoreML:')): def _export_coreml(self, prefix=colorstr('CoreML:')):
# YOLOv8 CoreML export # YOLOv8 CoreML export
check_requirements('coremltools>=6.0') check_requirements('coremltools>=6.0')

@ -235,7 +235,8 @@ class YOLO:
overrides.update(kwargs) # prefer kwargs overrides.update(kwargs) # prefer kwargs
overrides['mode'] = kwargs.get('mode', 'predict') overrides['mode'] = kwargs.get('mode', 'predict')
assert overrides['mode'] in ['track', 'predict'] assert overrides['mode'] in ['track', 'predict']
overrides['save'] = kwargs.get('save', False) # not save files by default if not is_cli:
overrides['save'] = kwargs.get('save', False) # do not save by default if called in Python
if not self.predictor: if not self.predictor:
self.task = overrides.get('task') or self.task self.task = overrides.get('task') or self.task
self.predictor = TASK_MAP[self.task][3](overrides=overrides, _callbacks=self.callbacks) self.predictor = TASK_MAP[self.task][3](overrides=overrides, _callbacks=self.callbacks)
@ -244,10 +245,23 @@ class YOLO:
self.predictor.args = get_cfg(self.predictor.args, overrides) self.predictor.args = get_cfg(self.predictor.args, overrides)
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
def track(self, source=None, stream=False, **kwargs): def track(self, source=None, stream=False, persist=False, **kwargs):
"""
Perform object tracking on the input source using the registered trackers.
Args:
source (str, optional): The input source for object tracking. Can be a file path or a video stream.
stream (bool, optional): Whether the input source is a video stream. Defaults to False.
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False.
**kwargs: Additional keyword arguments for the tracking process.
Returns:
object: The tracking results.
"""
if not hasattr(self.predictor, 'trackers'): if not hasattr(self.predictor, 'trackers'):
from ultralytics.tracker import register_tracker from ultralytics.tracker import register_tracker
register_tracker(self) register_tracker(self, persist)
# ByteTrack-based method needs low confidence predictions as input # ByteTrack-based method needs low confidence predictions as input
conf = kwargs.get('conf') or 0.1 conf = kwargs.get('conf') or 0.1
kwargs['conf'] = conf kwargs['conf'] = conf

@ -103,7 +103,7 @@ class BasePredictor:
self.data_path = None self.data_path = None
self.source_type = None self.source_type = None
self.batch = None self.batch = None
self.callbacks = _callbacks if _callbacks else callbacks.get_default_callbacks() self.callbacks = _callbacks or callbacks.get_default_callbacks()
callbacks.add_integration_callbacks(self) callbacks.add_integration_callbacks(self)
def preprocess(self, img): def preprocess(self, img):

@ -70,10 +70,12 @@ class Results(SimpleClass):
Args: Args:
orig_img (numpy.ndarray): The original image as a numpy array. orig_img (numpy.ndarray): The original image as a numpy array.
path (str): The path to the image file. path (str): The path to the image file.
names (List[str]): A list of class names. names (dict): A dictionary of class names.
boxes (List[List[float]], optional): A list of bounding box coordinates for each detection. boxes (List[List[float]], optional): A list of bounding box coordinates for each detection.
masks (numpy.ndarray, optional): A 3D numpy array of detection masks, where each mask is a binary image. masks (numpy.ndarray, optional): A 3D numpy array of detection masks, where each mask is a binary image.
probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class. probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class.
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
Attributes: Attributes:
orig_img (numpy.ndarray): The original image as a numpy array. orig_img (numpy.ndarray): The original image as a numpy array.
@ -81,9 +83,12 @@ class Results(SimpleClass):
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes. boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
masks (Masks, optional): A Masks object containing the detection masks. masks (Masks, optional): A Masks object containing the detection masks.
probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class. probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class.
names (List[str]): A list of class names. names (dict): A dictionary of class names.
path (str): The path to the image file. path (str): The path to the image file.
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
speed (dict): A dictionary of preprocess, inference and postprocess speeds in milliseconds per image.
_keys (tuple): A tuple of attribute names for non-empty attributes. _keys (tuple): A tuple of attribute names for non-empty attributes.
""" """
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None) -> None: def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None) -> None:
@ -93,6 +98,7 @@ class Results(SimpleClass):
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks
self.probs = probs if probs is not None else None self.probs = probs if probs is not None else None
self.keypoints = keypoints if keypoints is not None else None self.keypoints = keypoints if keypoints is not None else None
self.speed = {'preprocess': None, 'inference': None, 'postprocess': None} # milliseconds per image
self.names = names self.names = names
self.path = path self.path = path
self._keys = ('boxes', 'masks', 'probs', 'keypoints') self._keys = ('boxes', 'masks', 'probs', 'keypoints')
@ -203,7 +209,7 @@ class Results(SimpleClass):
keypoints = self.keypoints keypoints = self.keypoints
if pred_masks and show_masks: if pred_masks and show_masks:
if img_gpu is None: if img_gpu is None:
img = LetterBox(pred_masks.shape[1:])(image=annotator.im) img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
img_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.masks.device).permute( img_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.masks.device).permute(
2, 0, 1).flip(0).contiguous() / 255 2, 0, 1).flip(0).contiguous() / 255
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in pred_boxes.cls], im_gpu=img_gpu) annotator.masks(pred_masks.data, colors=[colors(x, True) for x in pred_boxes.cls], im_gpu=img_gpu)

@ -142,7 +142,7 @@ class BaseTrainer:
self.plot_idx = [0, 1, 2] self.plot_idx = [0, 1, 2]
# Callbacks # Callbacks
self.callbacks = _callbacks if _callbacks else callbacks.get_default_callbacks() self.callbacks = _callbacks or callbacks.get_default_callbacks()
if RANK in (-1, 0): if RANK in (-1, 0):
callbacks.add_integration_callbacks(self) callbacks.add_integration_callbacks(self)

@ -84,7 +84,7 @@ class BaseValidator:
if self.args.conf is None: if self.args.conf is None:
self.args.conf = 0.001 # default conf=0.001 self.args.conf = 0.001 # default conf=0.001
self.callbacks = _callbacks if _callbacks else callbacks.get_default_callbacks() self.callbacks = _callbacks or callbacks.get_default_callbacks()
@smart_inference_mode() @smart_inference_mode()
def __call__(self, trainer=None, model=None): def __call__(self, trainer=None, model=None):

Loading…
Cancel
Save