[Example] YOLOv8-OpenCV-ONNX-Python (#1007)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com>
single_channel
Farid Inawan 2 years ago committed by GitHub
parent edd3ff1669
commit 4b866c9718
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -3,8 +3,9 @@ This is a list of real-world applications and walkthroughs. These can be folders
## Ultralytics YOLO example applications ## Ultralytics YOLO example applications
| Title | Format | Contributor | | Title | Format | Contributor |
| --------------------------------------------------------------- | -------- | ------------------------------------------------- | | --------------------------------------------------------------- | ------------------ | --------------------------------------------------- |
| [Yolov8/yolov5 ONNX Inference with C++](./Yolov8_CPP_Inference) | C++/ONNX | [Justas Bartnykas](https://github.com/JustasBart) | | [Yolov8/yolov5 ONNX Inference with C++](./Yolov8_CPP_Inference) | C++/ONNX | [Justas Bartnykas](https://github.com/JustasBart) |
| [YOLOv8-OpenCV-ONNX-Python](./YOLOv8-OpenCV-ONNX-Python) | OpenCV/Python/ONNX | [Farid Inawan](https://github.com/frdteknikelektro) |
## How can you contribute ? ## How can you contribute ?

@ -0,0 +1,19 @@
# YOLOv8 - OpenCV
Implementation YOLOv8 on OpenCV using ONNX Format.
Just simply clone and run
```bash
pip install -r requirements.txt
python main.py
```
If you start from scratch:
```bash
pip install ultralytics
yolo export model=yolov8n.pt imgsz=640 format=onnx opset=12
```
_\*Make sure to include "opset=12"_

@ -0,0 +1,74 @@
import cv2.dnn
import numpy as np
from ultralytics.yolo.utils import ROOT, yaml_load
from ultralytics.yolo.utils.checks import check_yaml
CLASSES = yaml_load(check_yaml('coco128.yaml'))['names']
colors = np.random.uniform(0, 255, size=(len(CLASSES), 3))
def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
label = f'{CLASSES[class_id]} ({confidence:.2f})'
color = colors[class_id]
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
def main():
model: cv2.dnn.Net = cv2.dnn.readNetFromONNX('yolov8n.onnx')
original_image: np.ndarray = cv2.imread(str(ROOT / 'assets/bus.jpg'))
[height, width, _] = original_image.shape
length = max((height, width))
image = np.zeros((length, length, 3), np.uint8)
image[0:height, 0:width] = original_image
scale = length / 640
blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640))
model.setInput(blob)
outputs = model.forward()
outputs = np.array([cv2.transpose(outputs[0])])
rows = outputs.shape[1]
boxes = []
scores = []
class_ids = []
for i in range(rows):
classes_scores = outputs[0][i][4:]
(minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores)
if maxScore >= 0.25:
box = [
outputs[0][i][0] - (0.5 * outputs[0][i][2]), outputs[0][i][1] - (0.5 * outputs[0][i][3]),
outputs[0][i][2], outputs[0][i][3]]
boxes.append(box)
scores.append(maxScore)
class_ids.append(maxClassIndex)
result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5)
detections = []
for i in range(len(result_boxes)):
index = result_boxes[i]
box = boxes[index]
detection = {
'class_id': class_ids[index],
'class_name': CLASSES[class_ids[index]],
'confidence': scores[index],
'box': box,
'scale': scale}
detections.append(detection)
draw_bounding_box(original_image, class_ids[index], scores[index], round(box[0] * scale), round(box[1] * scale),
round((box[0] + box[2]) * scale), round((box[1] + box[3]) * scale))
cv2.imshow('image', original_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
return detections
if __name__ == '__main__':
main()
Loading…
Cancel
Save