ultralytics 8.0.76
minor fixes and improvements (#2004)
Co-authored-by: Seungtaek Kim <seungtaek.kim.94@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Ercalvez <45692523+Ercalvez@users.noreply.github.com> Co-authored-by: Erwan CALVEZ <ecalvez@enib.fr>
This commit is contained in:
9
ultralytics/yolo/utils/errors.py
Normal file
9
ultralytics/yolo/utils/errors.py
Normal file
@ -0,0 +1,9 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
from ultralytics.yolo.utils import emojis
|
||||
|
||||
|
||||
class HUBModelError(Exception):
|
||||
|
||||
def __init__(self, message='Model not found. Please check model URL and try again.'):
|
||||
super().__init__(emojis(message))
|
@ -172,19 +172,37 @@ class FocalLoss(nn.Module):
|
||||
|
||||
class ConfusionMatrix:
|
||||
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
||||
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
||||
self.matrix = np.zeros((nc + 1, nc + 1))
|
||||
def __init__(self, nc, conf=0.25, iou_thres=0.45, task='detect'):
|
||||
self.task = task
|
||||
self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == 'detect' else np.zeros((nc, nc))
|
||||
self.nc = nc # number of classes
|
||||
self.conf = conf
|
||||
self.iou_thres = iou_thres
|
||||
|
||||
def process_cls_preds(self, preds, targets):
|
||||
"""
|
||||
Update confusion matrix for classification task
|
||||
|
||||
Arguments:
|
||||
preds (Array[N, min(nc,5)])
|
||||
targets (Array[N, 1])
|
||||
|
||||
Returns:
|
||||
None, updates confusion matrix accordingly
|
||||
"""
|
||||
preds, targets = torch.cat(preds)[:, 0], torch.cat(targets)
|
||||
for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()):
|
||||
self.matrix[t][p] += 1
|
||||
|
||||
def process_batch(self, detections, labels):
|
||||
"""
|
||||
Return intersection-over-union (Jaccard index) of boxes.
|
||||
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||
|
||||
Arguments:
|
||||
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
||||
labels (Array[M, 5]), class, x1, y1, x2, y2
|
||||
|
||||
Returns:
|
||||
None, updates confusion matrix accordingly
|
||||
"""
|
||||
@ -231,7 +249,7 @@ class ConfusionMatrix:
|
||||
tp = self.matrix.diagonal() # true positives
|
||||
fp = self.matrix.sum(1) - tp # false positives
|
||||
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
|
||||
return tp[:-1], fp[:-1] # remove background class
|
||||
return (tp[:-1], fp[:-1]) if self.task == 'detect' else (tp, fp) # remove background class if task=detect
|
||||
|
||||
@TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
|
||||
@plt_settings()
|
||||
|
@ -547,9 +547,9 @@ def crop_mask(masks, boxes):
|
||||
(torch.Tensor): The masks are being cropped to the bounding box.
|
||||
"""
|
||||
n, h, w = masks.shape
|
||||
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
|
||||
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
|
||||
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
|
||||
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(n,1,1)
|
||||
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,1,w)
|
||||
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(1,h,1)
|
||||
|
||||
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
|
||||
|
||||
|
Reference in New Issue
Block a user