Shorten module paths with new 'nn' dir (#96)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -2,14 +2,13 @@ import torch
|
||||
import yaml
|
||||
|
||||
from ultralytics import yolo # noqa required for python usage
|
||||
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights
|
||||
# from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.utils import LOGGER
|
||||
from ultralytics.yolo.utils.checks import check_yaml
|
||||
from ultralytics.yolo.utils.configs import get_config
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
from ultralytics.yolo.utils.modeling import attempt_load_weights
|
||||
from ultralytics.yolo.utils.modeling.tasks import ClassificationModel, DetectionModel, SegmentationModel
|
||||
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
|
||||
|
||||
# map head: [model, trainer, validator, predictor]
|
||||
|
@ -30,13 +30,13 @@ from pathlib import Path
|
||||
|
||||
import cv2
|
||||
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages, LoadScreenshots, LoadStreams
|
||||
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS, check_dataset, check_dataset_yaml
|
||||
from ultralytics.yolo.utils import LOGGER, ROOT, colorstr, ops
|
||||
from ultralytics.yolo.utils.checks import check_file, check_imshow
|
||||
from ultralytics.yolo.utils.configs import get_config
|
||||
from ultralytics.yolo.utils.files import increment_path
|
||||
from ultralytics.yolo.utils.modeling.autobackend import AutoBackend
|
||||
from ultralytics.yolo.utils.torch_utils import check_imgsz, select_device, smart_inference_mode
|
||||
|
||||
DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml"
|
||||
@ -95,7 +95,7 @@ class BasePredictor:
|
||||
device = select_device(self.args.device)
|
||||
model = model or self.args.model
|
||||
self.args.half &= device.type != 'cpu' # half precision only supported on CUDA
|
||||
model = AutoBackend(model, device=device, dnn=self.args.dnn, fp16=self.args.half) # NOTE: not passing data
|
||||
model = AutoBackend(model, device=device, dnn=self.args.dnn, fp16=self.args.half)
|
||||
stride, pt = model.stride, model.pt
|
||||
imgsz = check_imgsz(self.args.imgsz, s=stride) # check image size
|
||||
|
||||
|
@ -4,11 +4,11 @@ import torch
|
||||
from omegaconf import OmegaConf
|
||||
from tqdm import tqdm
|
||||
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.utils import LOGGER, TQDM_BAR_FORMAT
|
||||
from ultralytics.yolo.utils.files import increment_path
|
||||
from ultralytics.yolo.utils.modeling.autobackend import AutoBackend
|
||||
from ultralytics.yolo.utils.ops import Profile
|
||||
from ultralytics.yolo.utils.torch_utils import check_imgsz, de_parallel, select_device, smart_inference_mode
|
||||
|
||||
|
Reference in New Issue
Block a user