|
|
|
@ -95,7 +95,7 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|
|
|
|
|
|
|
|
|
</details>
|
|
|
|
|
|
|
|
|
|
## <div align="center">Models</div>
|
|
|
|
|
## <div align="center">模型</div>
|
|
|
|
|
|
|
|
|
|
所有的 YOLOv8 预训练模型都可以在此找到。检测、分割和姿态模型在 [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml) 数据集上进行预训练,而分类模型在 [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/ImageNet.yaml) 数据集上进行预训练。
|
|
|
|
|
|
|
|
|
@ -105,18 +105,18 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|
|
|
|
|
|
|
|
|
查看 [检测文档](https://docs.ultralytics.com/tasks/detect/) 以获取使用这些模型的示例。
|
|
|
|
|
|
|
|
|
|
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
|
|
|
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
|
|
|
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>val<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
|
|
|
| ------------------------------------------------------------------------------------ | --------------- | -------------------- | --------------------------- | -------------------------------- | -------------- | ----------------- |
|
|
|
|
|
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
|
|
|
|
|
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
|
|
|
|
|
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
|
|
|
|
|
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
|
|
|
|
|
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
|
|
|
|
|
|
|
|
|
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
|
|
|
|
|
<br>Reproduce by `yolo val detect data=coco.yaml device=0`
|
|
|
|
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
|
|
|
|
|
<br>Reproduce by `yolo val detect data=coco128.yaml batch=1 device=0|cpu`
|
|
|
|
|
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO val2017](http://cocodataset.org) 数据集上的结果。
|
|
|
|
|
<br>通过 `yolo val detect data=coco.yaml device=0` 复现
|
|
|
|
|
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。
|
|
|
|
|
<br>通过 `yolo val detect data=coco128.yaml batch=1 device=0|cpu` 复现
|
|
|
|
|
|
|
|
|
|
</details>
|
|
|
|
|
|
|
|
|
@ -124,18 +124,18 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|
|
|
|
|
|
|
|
|
查看 [分割文档](https://docs.ultralytics.com/tasks/segment/) 以获取使用这些模型的示例。
|
|
|
|
|
|
|
|
|
|
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
|
|
|
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
|
|
|
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
|
|
|
| -------------------------------------------------------------------------------------------- | --------------- | -------------------- | --------------------- | --------------------------- | -------------------------------- | -------------- | ----------------- |
|
|
|
|
|
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
|
|
|
|
|
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
|
|
|
|
|
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
|
|
|
|
|
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
|
|
|
|
|
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
|
|
|
|
|
|
|
|
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
|
|
|
|
|
<br>Reproduce by `yolo val segment data=coco.yaml device=0`
|
|
|
|
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
|
|
|
|
|
<br>Reproduce by `yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu`
|
|
|
|
|
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO val2017](http://cocodataset.org) 数据集上的结果。
|
|
|
|
|
<br>通过 `yolo val segment data=coco.yaml device=0` 复现
|
|
|
|
|
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。
|
|
|
|
|
<br>通过 `yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu` 复现
|
|
|
|
|
|
|
|
|
|
</details>
|
|
|
|
|
|
|
|
|
@ -143,18 +143,18 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|
|
|
|
|
|
|
|
|
查看 [分类文档](https://docs.ultralytics.com/tasks/classify/) 以获取使用这些模型的示例。
|
|
|
|
|
|
|
|
|
|
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|
|
|
|
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
|
|
|
| 模型 | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>top5 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|
|
|
|
| -------------------------------------------------------------------------------------------- | --------------- | ---------------- | ---------------- | --------------------------- | -------------------------------- | -------------- | ------------------------ |
|
|
|
|
|
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
|
|
|
|
|
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
|
|
|
|
|
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
|
|
|
|
|
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
|
|
|
|
|
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
|
|
|
|
|
|
|
|
|
|
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set.
|
|
|
|
|
<br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
|
|
|
|
|
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
|
|
|
|
|
<br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
|
|
|
- **acc** 值是模型在 [ImageNet](https://www.image-net.org/) 数据集验证集上的准确率。
|
|
|
|
|
<br>通过 `yolo val classify data=path/to/ImageNet device=0` 复现
|
|
|
|
|
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 ImageNet val 图像进行平均计算的。
|
|
|
|
|
<br>通过 `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu` 复现
|
|
|
|
|
|
|
|
|
|
</details>
|
|
|
|
|
|
|
|
|
@ -162,8 +162,8 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|
|
|
|
|
|
|
|
|
查看 [姿态文档](https://docs.ultralytics.com/tasks/) 以获取使用这些模型的示例。
|
|
|
|
|
|
|
|
|
|
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
|
|
|
| ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
|
|
|
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
|
|
|
| ---------------------------------------------------------------------------------------------------- | --------------- | --------------------- | ------------------ | --------------------------- | -------------------------------- | -------------- | ----------------- |
|
|
|
|
|
| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 49.7 | 79.7 | 131.8 | 1.18 | 3.3 | 9.2 |
|
|
|
|
|
| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 59.2 | 85.8 | 233.2 | 1.42 | 11.6 | 30.2 |
|
|
|
|
|
| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 63.6 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
|
|
|
|
@ -171,15 +171,14 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|
|
|
|
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 68.9 | 90.4 | 1607.1 | 3.73 | 69.4 | 263.2 |
|
|
|
|
|
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.5 | 91.3 | 4088.7 | 10.04 | 99.1 | 1066.4 |
|
|
|
|
|
|
|
|
|
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](http://cocodataset.org)
|
|
|
|
|
dataset.
|
|
|
|
|
<br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
|
|
|
|
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
|
|
|
|
|
<br>Reproduce by `yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu`
|
|
|
|
|
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO Keypoints val2017](http://cocodataset.org) 数据集上的结果。
|
|
|
|
|
<br>通过 `yolo val pose data=coco-pose.yaml device=0` 复现
|
|
|
|
|
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。
|
|
|
|
|
<br>通过 `yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu` 复现
|
|
|
|
|
|
|
|
|
|
</details>
|
|
|
|
|
|
|
|
|
|
## <div align="center">Integrations</div>
|
|
|
|
|
## <div align="center">集成</div>
|
|
|
|
|
|
|
|
|
|
<br>
|
|
|
|
|
<a href="https://bit.ly/ultralytics_hub" target="_blank">
|
|
|
|
@ -212,7 +211,7 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|
|
|
|
<a href="https://bit.ly/ultralytics_hub" target="_blank">
|
|
|
|
|
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
|
|
|
|
|
|
|
|
|
|
## <div align="center">Contribute</div>
|
|
|
|
|
## <div align="center">贡献</div>
|
|
|
|
|
|
|
|
|
|
我们喜欢您的参与!没有社区的帮助,YOLOv5 和 YOLOv8 将无法实现。请参阅我们的[贡献指南](CONTRIBUTING.md)以开始使用,并填写我们的[调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey)向我们提供您的使用体验反馈。感谢所有贡献者的支持!🙏
|
|
|
|
|
|
|
|
|
@ -221,14 +220,14 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|
|
|
|
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
|
|
|
|
|
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png"></a>
|
|
|
|
|
|
|
|
|
|
## <div align="center">License</div>
|
|
|
|
|
## <div align="center">许可证</div>
|
|
|
|
|
|
|
|
|
|
YOLOv8 提供两种不同的许可证:
|
|
|
|
|
|
|
|
|
|
- **GPL-3.0 许可证**:详细信息请参阅 [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) 文件。
|
|
|
|
|
- **企业许可证**:为商业产品开发提供更大的灵活性,无需遵循 GPL-3.0 的开源要求。典型的用例是将 Ultralytics 软件和 AI 模型嵌入商业产品和应用中。在 [Ultralytics 授权](https://ultralytics.com/license) 处申请企业许可证。
|
|
|
|
|
|
|
|
|
|
## <div align="center">Contact</div>
|
|
|
|
|
## <div align="center">联系方式</div>
|
|
|
|
|
|
|
|
|
|
如需报告 YOLOv8 的错误或提出功能需求,请访问 [GitHub Issues](https://github.com/ultralytics/ultralytics/issues) 或 [Ultralytics 社区论坛](https://community.ultralytics.com/)。
|
|
|
|
|
|
|
|
|
|