single_channel
ayush chaurasia 2 years ago
parent d7df1770fa
commit 486bc49414

@ -28,16 +28,19 @@ from ultralytics.yolo.utils import LOGGER, ROOT, TQDM_BAR_FORMAT
from ultralytics.yolo.utils.checks import print_args
from ultralytics.yolo.utils.files import increment_path, save_yaml
from ultralytics.yolo.utils.modeling import get_model
from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, one_cycle
from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, one_cycle, init_seeds
DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml"
RANK = int(os.getenv('RANK', -1))
class BaseTrainer:
def __init__(self, config=DEFAULT_CONFIG, overrides={}):
self.console = LOGGER
self.args = self._get_config(config, overrides)
init_seeds(self.args.seed + 1 + RANK, deterministic=True)
self.console = LOGGER
self.validator = None
self.model = None
self.callbacks = defaultdict(list)

@ -41,7 +41,6 @@ class BaseValidator:
else: # TODO: handle this when detectMultiBackend is supported
assert model is not None, "Either trainer or model is needed for validation"
# model = DetectMultiBacked(model)
# TODO: implement init_model_attributes()
model.eval()
dt = Profile(), Profile(), Profile(), Profile()

@ -2,10 +2,12 @@ import math
import os
import platform
import time
import random
from contextlib import contextmanager
from copy import deepcopy
from pathlib import Path
import numpy as np
import thop
import torch
import torch.distributed as dist
@ -198,6 +200,20 @@ def one_cycle(y1=0.0, y2=1.0, steps=100):
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
def init_seeds(seed=0, deterministic=False):
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe
# torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213
torch.use_deterministic_algorithms(True)
torch.backends.cudnn.deterministic = True
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
os.environ['PYTHONHASHSEED'] = str(seed)
class ModelEMA:
""" Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models

Loading…
Cancel
Save